REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Zinc Oxide
Matching entries: 2 /2
All Groups
AUTHOR Zhang, Danwei and Jonhson, Win and Herng, Tun Seng and Ang, Yong Quan and Yang, Lin and Tan, Swee Ching and Peng, Erwin and He, Hui and Ding, Jun
Title A 3D-printing method of fabrication for metals{,} ceramics{,} and multi-materials using a universal self-curable technique for robocasting [Abstract]
Year 2019
Journal/Proceedings Materials Horizons
Reftype
DOI/URL DOI
Abstract
Ceramics and metals are important materials that modern technologies are constructed from. The capability to produce such materials in a complex geometry with good mechanical properties can revolutionize the way we engineer our devices. Current curing techniques pose challenges such as high energy requirements{,} limitations of materials with high refractive index{,} tedious post-processing heat treatment processes{,} uneven drying shrinkages{,} and brittleness of green bodies. In this paper{,} a novel modified self-curable epoxide–amine 3D printing system is proposed to print a wide range of ceramics (metal oxides{,} nitrides{,} and carbides) and metals without the need for an external curing source. Through this technique{,} complex multi-material structures (with metal–ceramic and ceramic–ceramic combinations) can also be realized. Tailoring and matching the sintering temperatures of different materials through sintering additives and dopants{,} combined with a structural design providing maximum adhesion between interfaces{,} allow us to successfully obtain superior quality sintered multi-material structures. High-quality ceramic and metallic materials have been achieved (e.g.{,} zirconia with >98% theoretical density). Also{,} highly conductive metals and magnetic ceramics were printed and shaped uniquely without the need for a sacrificial support. With the addition of low molecular weight plasticizers and a multi-stage heat treatment process{,} crack-free and dense high-quality integrated multi-material structures fabricated by 3D printing can thus be a reality in the near future.
AUTHOR Zhang, Danwei and Jonhson, Win and Herng, Tun Seng and Xu, Xi and Liu, Xiaojing and Pan, Liang-ming and He, Hui and Ding, Jun
Title High Temperature Co-firing of 3D-Printed Al-ZnO/Al2O3 Multi-Material Two-Phase Flow Sensor [Abstract]
Year 2021
Journal/Proceedings Journal of Materiomics
Reftype
DOI/URL URL DOI
Abstract
Sensors are crucial in the understanding of machines working under high temperatures and high-pressure conditions. Current devices utilize polymeric materials as electrical insulators which pose a challenge in the device’s lifespan. Ceramics, on the other hand, is robust and able to withstand high temperature and pressure. For such applications, a co-fired ceramic device which can provide both electrical conductivity and insulation is beneficial and acts as a superior candidate for sensor devices. In this paper, we propose a novel fabrication technique of complex multi-ceramics structures via 3D printing. This fabrication methodology increases both the geometrical complexity and the device’s shape precision. Structural ceramics (alumina) was employed as the electrical insulator whilst providing mechanical rigidity while a functional ceramic (alumina-doped zinc oxide) was employed as the electrically conductive material. The addition of sintering additives, tailoring the printing pastes’ solid loadings and heat treatment profile resolves multi-materials printing challenges such as shrinkage disparity and densification matching. Through high-temperature co-firing of ceramics (HTCC) technology, dense high quality functional multi-ceramics structures are achieved. The proposed fabrication methodology paves the way for multi-ceramics sensors to be utilized in high temperature and pressure systems in the near future.