REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Solid Dosage Drugs
Matching entries: 6 /6
All Groups
AUTHOR Fanous, Marina and Gold, Sarah and Muller, Silvain and Hirsch, Stefan and Ogorka, Joerg and Imanidis, Georgios
Title Simplification of fused deposition modeling 3D-printing paradigm: Feasibility of 1-step direct powder printing for immediate release dosage form production [Abstract]
Year 2020
Journal/Proceedings International Journal of Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Direct powder three-dimensional (3D)-printing (DPP) of tablets to simplify fused deposition modelling (FDM) was explored. The FDM paradigm involving hot-melt extrusion for making 3D-printable drug-loaded filaments as intermediate products for tablet manufacturing has been gaining attention for the decentralized on-site production of personalized dosage forms. For direct 3D-printing, powder blends were loaded into a cartridge-like head and were successfully printed with honeycomb design following heating of the extrusion cartridge. This 1-step DPP with incorporation of in-built porosity providing higher surface area served as proof of concept for manufacture of rapid release dosage forms. Water soluble hydroxypropylcellulose SSL was chosen as matrix former and caffeine as model drug. The effect of PEG4000 as plasticizer/pore former and Kollidon VA64 as rapidly dissolving polymer on DPP processability and dissolution rate was investigated. Directly 3D-printed tablets with low (30%) infill density showed rapid dissolution independently of the formulation, whereas for high (80%) infill density a combination of PEG4000 and Kollidon VA64 was required to achieve rapid release. The obtained tablets demonstrated good uniformity of percent drug content but had variable weight. Caffeine was present in crystalline state and in the stable polymorph in the tablets. Hence, DPP feasibility for immediate release dosage form manufacture was demonstrated. This technique might create an opportunity to avoid hot-melt extrusion allowing 3D-printing independently of mechanical properties of a filament and potentially prolonging product shelf life by reducing thermal stress.
AUTHOR Khaled, Shaban A. and Alexander, Morgan R. and Irvine, Derek J. and Wildman, Ricky D. and Wallace, Martin J. and Sharpe, Sonja and Yoo, Jae and Roberts, Clive J.
Title Extrusion 3D Printing of Paracetamol Tablets from a Single Formulation with Tunable Release Profiles Through Control of Tablet Geometry [Abstract]
Year 2018
Journal/Proceedings AAPS PharmSciTech
Reftype
DOI/URL DOI
Abstract
An extrusion-based 3D printer was used to fabricate paracetamol tablets with different geometries (mesh, ring and solid) from a single paste-based formulation formed from standard pharmaceutical ingredients. The tablets demonstrate that tunable drug release profiles can be achieved from this single formulation even with high drug loading (>{thinspace}80{%} w/w). The tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed well-defined release profiles (from immediate to sustained release) controlled by their different geometries. The dissolution results showed dependency of drug release on the surface area/volume (SA/V) ratio and the SA of the different tablets. The tablets with larger SA/V ratios and SA had faster drug release. The 3D printed tablets were also evaluated for physical and mechanical properties including tablet dimension, drug content, weight variation and breaking force and were within acceptable range as defined by the international standards stated in the US Pharmacopoeia. X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy were used to identify the physical form of the active and to assess possible drug-excipient interactions. These data again showed that the tablets meet USP requirement. These results clearly demonstrate the potential of 3D printing to create unique pharmaceutical manufacturing, and potentially clinical, opportunities. The ability to use a single unmodified formulation to achieve defined release profiles could allow, for example, relatively straightforward personalization of medicines for individuals with different metabolism rates for certain drugs and hence could offer significant development and clinical opportunities.
AUTHOR Khaled, Shaban A. and Burley, Jonathan C. and Alexander, Morgan R. and Yang, Jing and Roberts, Clive J.
Title 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles [Abstract]
Year 2015
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
Abstract We have used three dimensional (3D) extrusion printing to manufacture a multi-active solid dosage form or so called polypill. This contains five compartmentalised drugs with two independently controlled and well-defined release profiles. This polypill demonstrates that complex medication regimes can be combined in a single personalised tablet. This could potentially improve adherence for those patients currently taking many separate tablets and also allow ready tailoring of a particular drug combination/drug release for the needs of an individual. The polypill here represents a cardiovascular treatment regime with the incorporation of an immediate release compartment with aspirin and hydrochlorothiazide and three sustained release compartments containing pravastatin, atenolol, and ramipril. X-ray powder diffraction (XRPD) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used to assess drug-excipient interaction. The printed polypills were evaluated for drug release using {USP} dissolution testing. We found that the polypill showed the intended immediate and sustained release profiles based upon the active/excipient ratio used.
AUTHOR Khaled, Shaban A. and Alexander, Morgan R. and Wildman, Ricky D. and Wallace, Martin J. and Sharpe, Sonja and Yoo, Jae and Roberts, Clive J.
Title 3D extrusion printing of high drug loading immediate release paracetamol tablets [Abstract]
Year 2018
Journal/Proceedings International Journal of Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
The manufacture of immediate release high drug loading paracetamol oral tablets was achieved using an extrusion based 3D printer from a premixed water based paste formulation. The 3D printed tablets demonstrate that a very high drug (paracetamol) loading formulation (80% w/w) can be printed as an acceptable tablet using a method suitable for personalisation and distributed manufacture. Paracetamol is an example of a drug whose physical form can present challenges to traditional powder compression tableting. Printing avoids these issues and facilitates the relatively high drug loading. The 3D printed tablets were evaluated for physical and mechanical properties including weight variation, friability, breaking force, disintegration time, and dimensions and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). X-ray Powder Diffraction (XRPD) was used to identify the physical form of the active. Additionally, XRPD, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to assess possible drug-excipient interactions. The 3D printed tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed a profile characteristic of the immediate release profile as intended based upon the active/excipient ratio used with disintegration in less than 60 s and release of most of the drug within 5 min. The results demonstrate the capability of 3D extrusion based printing to produce acceptable high-drug loading tablets from approved materials that comply with current USP standards.
AUTHOR Khaled, Shaban A. and Burley, Jonathan C. and Alexander, Morgan R. and Yang, Jing and Roberts, Clive J.
Title 3D printing of tablets containing multiple drugs with defined release profiles [Abstract]
Year 2015
Journal/Proceedings International Journal of Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Abstract We have employed three-dimensional (3D) extrusion-based printing as a medicine manufacturing technique for the production of multi-active tablets with well-defined and separate controlled release profiles for three different drugs. This ‘polypill’ made by a 3D additive manufacture technique demonstrates that complex medication regimes can be combined in a single tablet and that it is viable to formulate and ‘dial up’ this single tablet for the particular needs of an individual. The tablets used to illustrate this concept incorporate an osmotic pump with the drug captopril and sustained release compartments with the drugs nifedipine and glipizide. This combination of medicines could potentially be used to treat diabetics suffering from hypertension. The room temperature extrusion process used to print the formulations used excipients commonly employed in the pharmaceutical industry. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray powder diffraction (XRPD) were used to assess drug–excipient interaction. The printed formulations were evaluated for drug release using {USP} dissolution testing. We found that the captopril portion showed the intended zero order drug release of an osmotic pump and noted that the nifedipine and glipizide portions showed either first order release or Korsmeyer–Peppas release kinetics dependent upon the active/excipient ratio used.
AUTHOR Jhinuk Rahman and Julian Quodbach
Title Versatility on demand – The case for semi-solid micro-extrusion in pharmaceutics [Abstract]
Year 2021
Journal/Proceedings Advanced Drug Delivery Reviews
Reftype
DOI/URL URL DOI
Abstract
Since additive manufacturing of pharmaceuticals has been introduced as viable method to produce individualized drug delivery systems with complex geometries and release profiles, semi-solid micro-extrusion has shown to be uniquely beneficial. Easy incorporation of actives, room-temperature processability and avoidance of cross-contamination by using disposables are some of the advantages that led many researchers to focus their work on this technology in the last few years. First acceptability and in-vivo studies have brought it closer towards implementation in decentralized settings. This review covers recently established process models in light of viscosity and printability discussions to help develop high quality printed medicines. Quality defining formulation and process parameters to characterize the various developed dosage forms are presented before critically discussing the role of semi-solid micro-extrusion in the future of personalized drug delivery systems. Remaining challenges regarding regulatory guidance and quality assurance that pose the last hurdle for large scale and commercial manufacturing are addressed.