SCIENTIFIC PUBLICATIONS

You are researching: Solid Dosage Drugs
Matching entries: 21 /21
All Groups
AUTHOR He, Shaolong and Radeke, Carmen and Jacobsen, Jette and Lind, Johan Ulrik and Mu, Huiling
Title Multi-material 3D printing of programmable and stretchable oromucosal patches for delivery of saquinavir [Abstract]
Year 2021
Journal/Proceedings International Journal of Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Oromucosal patches for drug delivery allow fast onset of action and ability to circumvent hepatic first pass metabolism of drugs. While conventional fabrication methods such as solvent casting or hot melt extrusion are ideal for scalable production of low-cost delivery patches, these methods chiefly allow for simple, homogenous patch designs. As alternative, a multi-material direct-ink-write 3D printing for rapid fabrication of complex oromucosal patches with unique design features was demonstrated in the present study. Specifically, three print-materials: an acidic saquinavir-loaded hydroxypropyl methylcellulose ink, an alkaline effervescent sodium carbonate-loaded ink, and a methyl cellulose backing material were combined in various designs. The CO2 content and pH of the microenvironment were controlled by adjusting the number of alkaline layers in the patch. Additionally, the rigid and brittle patches were converted to compliant and stretchable patches by implementing mesh-like designs. Our results illustrate how 3D printing can be used for rapid design and fabrication of multifunctional or customized oromucosal patches with tailored dosages and changed drug permeation.
AUTHOR Fanous, Marina and Gold, Sarah and Muller, Silvain and Hirsch, Stefan and Ogorka, Joerg and Imanidis, Georgios
Title Simplification of fused deposition modeling 3D-printing paradigm: Feasibility of 1-step direct powder printing for immediate release dosage form production [Abstract]
Year 2020
Journal/Proceedings International Journal of Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Direct powder three-dimensional (3D)-printing (DPP) of tablets to simplify fused deposition modelling (FDM) was explored. The FDM paradigm involving hot-melt extrusion for making 3D-printable drug-loaded filaments as intermediate products for tablet manufacturing has been gaining attention for the decentralized on-site production of personalized dosage forms. For direct 3D-printing, powder blends were loaded into a cartridge-like head and were successfully printed with honeycomb design following heating of the extrusion cartridge. This 1-step DPP with incorporation of in-built porosity providing higher surface area served as proof of concept for manufacture of rapid release dosage forms. Water soluble hydroxypropylcellulose SSL was chosen as matrix former and caffeine as model drug. The effect of PEG4000 as plasticizer/pore former and Kollidon VA64 as rapidly dissolving polymer on DPP processability and dissolution rate was investigated. Directly 3D-printed tablets with low (30%) infill density showed rapid dissolution independently of the formulation, whereas for high (80%) infill density a combination of PEG4000 and Kollidon VA64 was required to achieve rapid release. The obtained tablets demonstrated good uniformity of percent drug content but had variable weight. Caffeine was present in crystalline state and in the stable polymorph in the tablets. Hence, DPP feasibility for immediate release dosage form manufacture was demonstrated. This technique might create an opportunity to avoid hot-melt extrusion allowing 3D-printing independently of mechanical properties of a filament and potentially prolonging product shelf life by reducing thermal stress.
AUTHOR Khaled, Shaban A. and Alexander, Morgan R. and Irvine, Derek J. and Wildman, Ricky D. and Wallace, Martin J. and Sharpe, Sonja and Yoo, Jae and Roberts, Clive J.
Title Extrusion 3D Printing of Paracetamol Tablets from a Single Formulation with Tunable Release Profiles Through Control of Tablet Geometry [Abstract]
Year 2018
Journal/Proceedings AAPS PharmSciTech
Reftype
DOI/URL DOI
Abstract
An extrusion-based 3D printer was used to fabricate paracetamol tablets with different geometries (mesh, ring and solid) from a single paste-based formulation formed from standard pharmaceutical ingredients. The tablets demonstrate that tunable drug release profiles can be achieved from this single formulation even with high drug loading (>{thinspace}80{%} w/w). The tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed well-defined release profiles (from immediate to sustained release) controlled by their different geometries. The dissolution results showed dependency of drug release on the surface area/volume (SA/V) ratio and the SA of the different tablets. The tablets with larger SA/V ratios and SA had faster drug release. The 3D printed tablets were also evaluated for physical and mechanical properties including tablet dimension, drug content, weight variation and breaking force and were within acceptable range as defined by the international standards stated in the US Pharmacopoeia. X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy were used to identify the physical form of the active and to assess possible drug-excipient interactions. These data again showed that the tablets meet USP requirement. These results clearly demonstrate the potential of 3D printing to create unique pharmaceutical manufacturing, and potentially clinical, opportunities. The ability to use a single unmodified formulation to achieve defined release profiles could allow, for example, relatively straightforward personalization of medicines for individuals with different metabolism rates for certain drugs and hence could offer significant development and clinical opportunities.
AUTHOR Khaled, Shaban A. and Burley, Jonathan C. and Alexander, Morgan R. and Yang, Jing and Roberts, Clive J.
Title 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles [Abstract]
Year 2015
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
Abstract We have used three dimensional (3D) extrusion printing to manufacture a multi-active solid dosage form or so called polypill. This contains five compartmentalised drugs with two independently controlled and well-defined release profiles. This polypill demonstrates that complex medication regimes can be combined in a single personalised tablet. This could potentially improve adherence for those patients currently taking many separate tablets and also allow ready tailoring of a particular drug combination/drug release for the needs of an individual. The polypill here represents a cardiovascular treatment regime with the incorporation of an immediate release compartment with aspirin and hydrochlorothiazide and three sustained release compartments containing pravastatin, atenolol, and ramipril. X-ray powder diffraction (XRPD) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used to assess drug-excipient interaction. The printed polypills were evaluated for drug release using {USP} dissolution testing. We found that the polypill showed the intended immediate and sustained release profiles based upon the active/excipient ratio used.
AUTHOR Khaled, Shaban A. and Alexander, Morgan R. and Wildman, Ricky D. and Wallace, Martin J. and Sharpe, Sonja and Yoo, Jae and Roberts, Clive J.
Title 3D extrusion printing of high drug loading immediate release paracetamol tablets [Abstract]
Year 2018
Journal/Proceedings International Journal of Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
The manufacture of immediate release high drug loading paracetamol oral tablets was achieved using an extrusion based 3D printer from a premixed water based paste formulation. The 3D printed tablets demonstrate that a very high drug (paracetamol) loading formulation (80% w/w) can be printed as an acceptable tablet using a method suitable for personalisation and distributed manufacture. Paracetamol is an example of a drug whose physical form can present challenges to traditional powder compression tableting. Printing avoids these issues and facilitates the relatively high drug loading. The 3D printed tablets were evaluated for physical and mechanical properties including weight variation, friability, breaking force, disintegration time, and dimensions and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). X-ray Powder Diffraction (XRPD) was used to identify the physical form of the active. Additionally, XRPD, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to assess possible drug-excipient interactions. The 3D printed tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed a profile characteristic of the immediate release profile as intended based upon the active/excipient ratio used with disintegration in less than 60 s and release of most of the drug within 5 min. The results demonstrate the capability of 3D extrusion based printing to produce acceptable high-drug loading tablets from approved materials that comply with current USP standards.
AUTHOR Khaled, Shaban A. and Burley, Jonathan C. and Alexander, Morgan R. and Yang, Jing and Roberts, Clive J.
Title 3D printing of tablets containing multiple drugs with defined release profiles [Abstract]
Year 2015
Journal/Proceedings International Journal of Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Abstract We have employed three-dimensional (3D) extrusion-based printing as a medicine manufacturing technique for the production of multi-active tablets with well-defined and separate controlled release profiles for three different drugs. This ‘polypill’ made by a 3D additive manufacture technique demonstrates that complex medication regimes can be combined in a single tablet and that it is viable to formulate and ‘dial up’ this single tablet for the particular needs of an individual. The tablets used to illustrate this concept incorporate an osmotic pump with the drug captopril and sustained release compartments with the drugs nifedipine and glipizide. This combination of medicines could potentially be used to treat diabetics suffering from hypertension. The room temperature extrusion process used to print the formulations used excipients commonly employed in the pharmaceutical industry. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray powder diffraction (XRPD) were used to assess drug–excipient interaction. The printed formulations were evaluated for drug release using {USP} dissolution testing. We found that the captopril portion showed the intended zero order drug release of an osmotic pump and noted that the nifedipine and glipizide portions showed either first order release or Korsmeyer–Peppas release kinetics dependent upon the active/excipient ratio used.
AUTHOR Qin Lihao and Liu Tingting and Zhang Jiawei and Bai Yifei and Tang Zheyu and Li Jingyan and Xue Tongqing and Jia Zhongzhi
Title 3D bioprinting of Salvianolic acid B-sodium alginate-gelatin skin scaffolds promotes diabetic wound repair via antioxidant, anti-inflammatory, and proangiogenic effects [Abstract]
Year 2024
Journal/Proceedings Biomedicine & Pharmacotherapy
Reftype
DOI/URL URL DOI
Abstract
In patients with diabetic wounds, wound healing is impaired due to the presence of persistent oxidative stress, an altered inflammatory response, and impaired angiogenesis and epithelization. Salvianolic acid B (SAB), which is derived from the Chinese medicinal plant Salvia miltiorrhiza, has been found to exhibit antioxidant, anti-inflammatory, and proangiogenic effects. Previous studies have used 3D bioprinting technology incorporating sodium alginate (SA) and gelatin (Gel) as basic biomaterials to successfully produce artificial skin. In the current study, 3D bioprinting technology was used to incorporate SAB into SA-Gel to form a novel SAB-SA-Gel composite porous scaffold. The morphological characteristics, physicochemical characteristics, biocompatibility, and SAB release profile of the SAB-SA-Gel scaffolds were evaluated in vitro. In addition, the antioxidant, anti-inflammatory, and proangiogenic abilities of the SAB-SA-Gel scaffolds were evaluated in cells and in a rat model. Analysis demonstrated that 1.0 wt% (the percentage of SAB in the total weight of the solution containing SA and Gel) SAB-SA-Gel scaffolds had strong antioxidant, anti-inflammatory, and proangiogenic properties both in cells and in the rat model. The 1.0% SAB-SA-Gel scaffold reduced the expression of tumor necrosis factor-α, interleukin-6, and interluekin-1β and increased the expression of transforming growth factor-β. In addition, this scaffold removed excessive reactive oxygen species by increasing the expression of superoxide dismutase, thereby protecting fibroblasts from injury. The scaffold increased the expression of vascular endothelial growth factor and platelet/endothelial cell adhesion molecule-1, accelerated granulation tissue regeneration and collagen deposition, and promoted wound healing. These findings suggest that this innovative scaffold may have promise as a simple and efficient approach to managing diabetic wound repair.
AUTHOR Aguilar-de-Leyva, Ángela and Casas, Marta and Ferrero, Carmen and Linares, Vicente and Caraballo, Isidoro
Title 3D Printing Direct Powder Extrusion in the Production of Drug Delivery Systems: State of the Art and Future Perspectives [Abstract]
Year 2024
Journal/Proceedings Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
The production of tailored, on-demand drug delivery systems has gained attention in pharmaceutical development over the last few years, thanks to the application of 3D printing technology in the pharmaceutical field. Recently, direct powder extrusion (DPE) has emerged among the extrusion-based additive manufacturing techniques. It is a one-step procedure that allows the direct processing of powdered formulations. The aim of this systematic literature review is to analyze the production of drug delivery systems using DPE. A total of 27 articles have been identified through scientific databases (Scopus, PubMed, and ScienceDirect). The main characteristics of the three types of 3D printers based on DPE have been discussed. The selection of polymers and auxiliary excipients, as well as the flowability of the powder mixture, the rheological properties of the molten material, and the printing temperatures have been identified as the main critical parameters for successful printing. A wide range of drug delivery systems with varied geometries and different drug release profiles intended for oral, buccal, parenteral, and transdermal routes have been produced. The ability of this technique to manufacture personalized, on-demand drug delivery systems has been proven. For all these reasons, its implementation in hospital settings in the near future seems promising.
AUTHOR Weng, Yiping and Yuan, Xiuchen and Fan, Shijie and Duan, Weihao and Tan, Yadong and Zhou, Ruikai and Wu, Jingbin and Shen, Yifei and Zhang, Zhonghua and Xu, Hua
Title 3D-Printed Biomimetic Hydroxyapatite Composite Scaffold Loaded with Curculigoside for Rat Cranial Defect Repair [Abstract]
Year 2024
Journal/Proceedings ACS Omega
Reftype
DOI/URL DOI
Abstract
The treatment of various large bone defects has remained a challenge for orthopedic surgeons for a long time. Recent research indicates that curculigoside (CUR) extracted from the curculigo plant exerts a positive influence on bone formation, contributing to fracture healing. In this study, we employed emulsification/solvent evaporation techniques to successfully fabricate poly(ε-caprolactone) nanoparticles loaded with curculigoside (CUR@PM). Subsequently, using three-dimensional (3D) printing technology, we successfully developed a bioinspired composite scaffold named HA/GEL/SA/CUR@PM (HGSC), chemically cross-linked with calcium chloride, to ensure scaffold stability. Further characterization of the scaffold’s physical and chemical properties revealed uniform pore size, good hydrophilicity, and appropriate mechanical properties while achieving sustained drug release for up to 12 days. In vitro experiments demonstrated the nontoxicity, good biocompatibility, and cell proliferative properties of HGSC. Through alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, cell migration assays, tube formation assays, and detection of angiogenic and osteogenic gene proteins, we confirmed the HGSC composite scaffold’s significant angiogenic and osteoinductive capabilities. Eight weeks postimplantation in rat cranial defects, Micro-computed tomography (CT) and histological observations revealed pronounced angiogenesis and new bone growth in areas treated with the HGSC composite scaffold. These findings underscore the scaffold’s exceptional angiogenic and osteogenic properties, providing a solid theoretical basis for clinical bone repair and demonstrating its potential in promoting vascularization and bone regeneration.
AUTHOR Shangsi Chen, Yue Wang, Junzhi Li, Haoran Su, Ming-Fung Francis Siu, Shenglong Tan
Title 3D-printed Mg-substituted hydroxyapatite/ gelatin methacryloyl hydrogels encapsulated with PDA@DOX particles for bone tumor therapy and bone tissue regeneration
Year 2024
Journal/Proceedings IJB
Reftype
DOI/URL DOI
AUTHOR Fischetti, Tiziana and Graziani, Gabriela and Ghezzi, Daniele and Kaiser, Friederike and Hoelscher-Doht, Stefanie and Cappelletti, Martina and Barbanti-Bròdano, Giovanni and Groll, Jürgen and Baldini, Nicola and Gbureck, Uwe and Jungst, Tomasz
Title Combining 3D Printing and Cryostructuring to Tackle Infection and Spine Fusion [Abstract]
Year 2024
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract Low back pain is among the main issues in vertebral orthopaedics. Intervertebral disk degeneration can be severe, up to requiring the replacement of the damaged disk by substitutes to achieve spine fusion. Disk removal results in critical size defects, so fusion does not occur naturally, but synthetic bone grafts are needed. Since the surgical procedure is time-consuming, high infection rates occur. Hence, in spine fusion, bone regeneration enhancement and infection prevention are needed. Here, a new dual-component system is proposed, to tackle both issues at one time. To enable spine fusion, 3D extrusion-based printing is employed to develop coherent custom magnesium phosphate (CaMgP)-based cages. The 3D-printed scaffolds are hardened, and the structural properties are evaluated to be within the ranges of physiological bone. To prevent infection, an in-house ice-templating device is employed in combination with a 3D-printed ceramic scaffold, to develop tailored porous alginate structures loaded with vancomycin. Results show that CaMgP can be printed into complex geometries and that the geometry influences the pore orientation during ice-templating. These structures loaded with vancomycin have antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) strains.
AUTHOR Wang, Qilong and Liu, Kai and Cao, Xia and Rong, Wanjin and Shi, Wenwan and Yu, Qintong and Deng, Wenwen and Yu, Jiangnan and Xu, Ximing
Title Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold [Abstract]
Year 2024
Journal/Proceedings Bioengineering & Translational Medicine
Reftype
DOI/URL DOI
Abstract
Abstract Plant-derived exosomes (PEs) possess an array of therapeutic properties, including antitumor, antiviral, and anti-inflammatory capabilities. They are also implicated in defensive responses to pathogenic attacks. Spinal cord injuries (SCIs) regeneration represents a global medical challenge, with appropriate research concentration on three pivotal domains: neural regeneration promotion, inflammation inhibition, and innovation and application of regenerative scaffolds. Unfortunately, the utilization of PE in SCI therapy remains unexplored. Herein, we isolated PE from the traditional Chinese medicinal herb, Lycium barbarum L. and discovered their inflammatory inhibition and neuronal differentiation promotion capabilities. Compared with exosomes derived from ectomesenchymal stem cells (EMSCs), PE demonstrated a substantial enhancement in neural differentiation. We encapsulated isoliquiritigenin (ISL)-loaded plant-derived exosomes (ISL@PE) from L. barbarum L. within a 3D-printed bionic scaffold. The intricate construct modulated the inflammatory response following SCI, facilitating the restoration of damaged axons and culminating in ameliorated neurological function. This pioneering investigation proposes a novel potential route for insoluble drug delivery via plant exosomes, as well as SCI repair. The institutional animal care and use committee number is UJS-IACUC-2020121602.
AUTHOR Shijie Fan and Yadong Tan and Xiuchen Yuan and Chun Liu and Xiaoyu Wu and Ting Dai and Su Ni and Jiafeng Wang and Yiping Weng and Hongbin Zhao
Title Regulation of the immune microenvironment by pioglitazone-loaded polylactic glycolic acid nanosphere composite scaffolds to promote vascularization and bone regeneration [Abstract]
Year 2024
Journal/Proceedings Journal of Tissue Engineering
Reftype
DOI/URL DOI
Abstract
Osteogenesis is caused by multiple factors, and the inflammatory response, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), regeneration of blood vessels, and other factors must be considered in bone tissue engineering. To effectively repair bone defect, it is important to decrease excessive inflammation, enhance the differentiation of mesenchymal stem cells into osteoblasts, and stimulate angiogenesis. Herein, nano-attapulgite (ATP), polyvinyl alcohol (PVA), and gelatin (GEL) scaffolds were produced using 3D printing technology and pioglitazone (PIO)-containing polylactic acid–glycolic acid (PLGA) nanospheres were added. In both in vitro and in vivo studies, material scaffolds with PIO-loaded polylactic acid–glycolic acid nanospheres could reduce the inflammatory response by encouraging macrophage polarization from M1 to M2 and promoting the osteogenic differentiation of BMSCs by activating the BMP2/Smad/RUNX2 signal pathway to repair bone defects. The vascularization of human umbilical vein endothelial cells (HUVECs) through the PI3K/AKT/HIF1-/VEGF pathway was also encouraged. In vivo research using PIO-containing PLGA nanospheres revealed massive collagen deposition in skin models. These findings indicate a potentially effective scaffold for bone healing, when PLGA nanospheres—which contain the drug PIO—are combined with ATP/PVA/GEL scaffolds.
AUTHOR J. {Anupama Sekar} and Shiny Velayudhan and M. Senthilkumar and P.R. {Anil Kumar}
Title Silymarin enriched gelatin methacrylamide bioink imparts hepatoprotectivity to 3D bioprinted liver construct against carbon tetrachloride induced toxicity [Abstract]
Year 2024
Journal/Proceedings European Journal of Pharmaceutics and Biopharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Three-dimensional liver bioprinting is an emerging technology in the field of regenerative medicine that aids in the creation of functional tissue constructs that can be used as transplantable organ substitutes. During transplantation, the bioprinted donor liver must be protected from the oxidative stress environment created by various factors during the transplantation procedure, as well as from drug-induced damage from medications taken as part of the post-surgery medication regimen following the procedure. In this study, Silymarin, a flavonoid with the hepatoprotective properties were introduced into the GelMA bioink formulation to protect the bioprinted liver against hepatotoxicity. The concentration of silymarin to be added in GelMA was optimised, bioink properties were evaluated, and HepG2 cells were used to bioprint liver tissue. Carbon tetrachloride (CCl4) was used to induce hepatotoxicity in bioprinted liver, and the effect of this chemical on the metabolic activities of HepG2 cells was studied. The results showed that Silymarin helps with albumin synthesis and shields liver tissue from the damaging effects of CCl4. According to gene expression analysis, CCl4 treatment increased TNF-α and the antioxidant enzyme SOD expression in HepG2 cells while the presence of silymarin protected the bioprinted construct from CCl4-induced damage. Thus, the outcomes demonstrate that the addition of silymarin in GelMA formulation protects liver function in toxic environments.
AUTHOR Anupama Sekar, J. and Velayudhan, Shiny and Anil Kumar, P. R.
Title Biocompatibility evaluation of antioxidant cocktail loaded gelatin methacrylamide as bioink for extrusion-based 3D bioprinting [Abstract]
Year 2023
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) liver bioprinting is a promising technique for creating 3D liver models that can be used for in vitro drug testing, hepatotoxicity studies, and transplantation. The functional performance of 3D bioprinted liver constructs are limited by the lack of cell–cell interactions, which calls for the creation of bioprinted tissue constructs with high cell densities. This study reports the fabrication of 3D bioprinted liver constructs using a novel photocrosslinkable gelatin methacrylamide (GelMA)-based bioink formulation. However, the formation of excess free radicals during photoinitiation poses a challenge, particularly during photocrosslinking of large constructs with high cell densities. Hence, we designed a bioink formulation comprising the base polymer GelMA loaded with an antioxidant cocktail containing vitamin C (L-ascorbic acid (AA)) and vitamin E (α-tocopherol (α-Toc)). We confirmed that the combination of antioxidants loaded in GelMA enhanced the ability to scavenge intracellular reactive oxygen species formed during photocrosslinking. The GelMA formulation was evaluated for biocompatibility in vitro and in vivo. These results demonstrated that the bioink had adequate rheological characteristics and was biocompatible. Furthermore, when compared to bioprinted constructs with lower cell density, high-density primary rat hepatocyte constructs demonstrated improved cell-cell interactions and liver-specific functions like albumin and urea secretion, which increased 5-fold and 2.5-fold, respectively.
AUTHOR Cojocaru, Elena and Ghitman, Jana and Pircalabioru, Gratiela Gradisteanu and Zaharia, Anamaria and Iovu, Horia and Sarbu, Andrei
Title Electrospun/3D-Printed Bicomponent Scaffold Co-Loaded with a Prodrug and a Drug with Antibacterial and Immunomodulatory Properties [Abstract]
Year 2023
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
This work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin–polyethylene glycol–indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing.
AUTHOR Tan, Yadong and Fan, Shijie and Wu, Xiaoyu and Liu, Menggege and Dai, Ting and Liu, Chun and Ni, Su and Wang, Jiafeng and Yuan, Xiuchen and Zhao, Hongbin and Weng, Yiping
Title Fabrication of a three-dimensional printed gelatin/sodium alginate/nano-attapulgite composite polymer scaffold loaded with leonurine hydrochloride and its effects on osteogenesis and vascularization [Abstract]
Year 2023
Journal/Proceedings International Journal of Biological Macromolecules
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering scaffolds have made significant progress in treating bone defects in recent decades. However, the lack of a vascular network within the scaffold limits bone formation after implantation in vivo. Recent research suggests that leonurine hydrochloride (LH) can promote healing in full-thickness cutaneous wounds by increasing vessel formation and collagen deposition. Gelatin and Sodium Alginate are both polymers. ATP is a magnesium silicate chain mineral. In this study, a Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel was used as the base material first, and the Gelatin/Sodium Alginate/Nano-Attapulgite composite polymer scaffold loaded with LH was then created using 3D printing technology. Finally, LH was grafted onto the base material by an amide reaction to construct a scaffold loaded with LH to achieve long-term LH release. When compared to pure polymer scaffolds, in vitro results showed that LH-loaded scaffolds promoted the differentiation of BMSCs into osteoblasts, as evidenced by increased expression of osteogenic key genes. The results of in vivo tissue staining revealed that the drug-loaded scaffold promoted both angiogenesis and bone formation. Collectively, these findings suggest that LH-loaded Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel scaffolds are a potential therapeutic strategy and can assist bone regeneration.
AUTHOR Majrashi, Majed and Kotowska, Anna and Scurr, David and Hicks, Jacqueline M. and Ghaemmaghami, Amir and Yang, Jing
Title Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation [Abstract]
Year 2023
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address the current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells during bone formation. Moreover, biomaterial scaffold-based approaches to effectively modulate this crosstalk to favor bone healing are also lacking. This study is the first to investigate the interactions between macrophages and mesenchymal stem cells (MSCs) in co-cultures with the sustained release of an anti-inflammatory and pro-osteogenesis drug (dexamethasone) from three-dimensional (3D)-printed scaffolds. We successfully achieved the sustained release of dexamethasone from polycaprolactone (PCL) by adding the excipient-sucrose acetate isobutyrate (SAIB). Dexamethasone was released over 35 days in the 17-163 nM range. The osteogenic differentiation of MSCs was enhanced by M1 macrophages at early time points. The late-stage mineralization was dominated by dexamethasone, with little contribution from the macrophages. Besides confirming BMP-2 whose secretion was promoted by both dexamethasone and M1 macrophages as a soluble mediator for enhanced osteogenesis, IL-6 was found to be a possible new soluble factor that mediated osteogenesis in macrophage-MSC co-cultures. The phenotype switching from M1 to M2 was drastically enhanced by the scaffold-released dexamethasone but only marginally by the co-cultured MSCs. Our results offer new insight into macrophage-MSC crosstalk and demonstrate the potential of using drug-release scaffolds to both modulate inflammation and enhance bone regeneration.
AUTHOR Hilgeroth, Philipp S. and Thümmler, Justus F. and Binder, Wolfgang H.
Title 3D Printing of Triamcinolone Acetonide in Triblock Copolymers of Styrene–Isobutylene–Styrene as a Slow-Release System [Abstract]
Year 2022
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Additive manufacturing has a wide range of applications and has opened up new methods of drug formulation, in turn achieving attention in medicine. We prepared styrene–isobutylene–styrene triblock copolymers (SIBS; Mn = 10 kDa–25 kDa, PDI 1,3–1,6) as a drug carrier for triamcinolone acetonide (TA), further processed by fused deposition modeling to create a solid drug release system displaying improved bioavailability and applicability. Living carbocationic polymerization was used to exert control over block length and polymeric architecture. Thermorheological properties of the SIBS polymer (22.3 kDa, 38 wt % S) were adjusted to the printability of SIBS/TA mixtures (1–5% of TA), generating an effective release system effective for more than 60 days. Continuous drug release and morphological investigations were conducted to probe the influence of the 3D printing process on the drug release, enabling 3D printing as a formulation method for a slow-release system of Triamcinolone.
AUTHOR Puertas-Bartolomé, María and Włodarczyk-Biegun, Małgorzata K. and del Campo, Aránzazu and Vázquez-Lasa, Blanca and San Román, Julio
Title Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing. Thus, NPs wound healing promoting activities, potential for drug encapsulation and controlled release, and further incorporation in a hydrogel bioink formulation to fabricate cell-laden 3D scaffolds are studied. NPs with 2 and 29 M % catechol contents (named NP2 and NP29) were obtained by nanoprecipitation and presented hydrodynamic diameters of 100 and 75 nm respectively. These nanocarriers encapsulated the hydrophobic compound coumarin-6 with 70% encapsulation efficiency values. In cell culture studies, the NPs had a protective effect in RAW 264.7 macrophages against oxidative stress damage induced by radical oxygen species (ROS). They also presented a regulatory effect on the inflammatory response of stimulated macrophages and promoted upregulation of the vascular endothelial growth factor (VEGF) in fibroblasts and endothelial cells. In particular, NP29 were used in a hydrogel bioink formulation using carboxymethyl chitosan and hyaluronic acid as polymeric matrices. Using a reactive mixing bioprinting approach, NP-loaded hydrogel scaffolds with good structural integrity, shape fidelity and homogeneous NPs dispersion, were obtained. The in vitro catechol NPs release profile of the printed scaffolds revealed a sustained delivery. The bioprinted scaffolds supported viability and proliferation of encapsulated L929 fibroblasts over 14 days. We envision that the catechol functionalized NPs and resulting bioactive bioink presented in this work offer promising advantages for wound healing applications, as they: 1) support controlled release of bioactive catechol NPs to the wound site; 2) can incorporate additional therapeutic functions by co-encapsulating drugs; 3) can be printed into 3D scaffolds with tailored geometries based on patient requirements.
AUTHOR Jhinuk Rahman and Julian Quodbach
Title Versatility on demand – The case for semi-solid micro-extrusion in pharmaceutics [Abstract]
Year 2021
Journal/Proceedings Advanced Drug Delivery Reviews
Reftype
DOI/URL URL DOI
Abstract
Since additive manufacturing of pharmaceuticals has been introduced as viable method to produce individualized drug delivery systems with complex geometries and release profiles, semi-solid micro-extrusion has shown to be uniquely beneficial. Easy incorporation of actives, room-temperature processability and avoidance of cross-contamination by using disposables are some of the advantages that led many researchers to focus their work on this technology in the last few years. First acceptability and in-vivo studies have brought it closer towards implementation in decentralized settings. This review covers recently established process models in light of viscosity and printability discussions to help develop high quality printed medicines. Quality defining formulation and process parameters to characterize the various developed dosage forms are presented before critically discussing the role of semi-solid micro-extrusion in the future of personalized drug delivery systems. Remaining challenges regarding regulatory guidance and quality assurance that pose the last hurdle for large scale and commercial manufacturing are addressed.