REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Adipose Tissue Engineering
Matching entries: 2 /2
All Groups
AUTHOR Benmeridja, Lara and De Moor, Lise and De Maere, Elisabeth and Vanlauwe, Florian and Ryx, Michelle and Tytgat, Liesbeth and Vercruysse, Chris and Dubruel, Peter and Van Vlierberghe, Sandra and Blondeel, Phillip and Declercq, Heidi
Title High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting [Abstract]
Year 2020
Journal/Proceedings Journal of Tissue Engineering and Regenerative Medicine
Reftype
DOI/URL DOI
Abstract
Abstract For patients with soft tissue defects, repair with autologous in vitro engineered adipose tissue could be a promising alternative to current surgical therapies. A volume-persistent engineered adipose tissue construct under in vivo conditions can only be achieved by early vascularization after transplantation. The combination of 3D bioprinting technology with self-assembling microvascularized units as building blocks can potentially answer the need for a microvascular network. In the present study, co-culture spheroids combining adipose-derived stem cells (ASC) and human umbilical vein endothelial cells (HUVEC) were created with an ideal geometry for bioprinting. When applying the favourable seeding technique and condition, compact viable spheroids were obtained, demonstrating high adipogenic differentiation and capillary-like network formation after 7 and 14 days of culture, as shown by live/dead analysis, immunohistochemistry and RT-qPCR. Moreover, we were able to successfully 3D bioprint the encapsulated spheroids, resulting in compact viable spheroids presenting capillary-like structures, lipid droplets and spheroid outgrowth after 14 days of culture. This is the first study that generates viable high-throughput (pre-)vascularized adipose microtissues as building blocks for bioprinting applications using a novel ASC/HUVEC co-culture spheroid model, which enables both adipogenic differentiation while simultaneously supporting the formation of prevascular-like structures within engineered tissues in vitro.
AUTHOR Colle, Julien and Blondeel, Phillip and De Bruyne, Axelle and Bochar, Silke and Tytgat, Liesbeth and Vercruysse, Chris and Van Vlierberghe, Sandra and Dubruel, Peter and Declercq, Heidi
Title Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering [Abstract]
Year 2020
Journal/Proceedings Journal of Materials Science: Materials in Medicine
Reftype Colle2020
DOI/URL DOI
Abstract
The increasing number of mastectomies results in a greater demand for breast reconstruction characterized by simplicity and a low complication profile. Reconstructive surgeons are investigating tissue engineering (TE) strategies to overcome the current surgical drawbacks. 3D bioprinting is the rising technique for the fabrication of large tissue constructs which provides a potential solution for unmet clinical needs in breast reconstruction building on decades of experience in autologous fat grafting, adipose-derived mesenchymal stem cell (ASC) biology and TE. A scaffold was bioprinted using encapsulated ASC spheroids in methacrylated gelatin ink (GelMA). Uniform ASC spheroids with an ideal geometry and diameter for bioprinting were formed, using a high-throughput non-adhesive agarose microwell system. ASC spheroids in adipogenic differentiation medium (ADM) were evaluated through live/dead staining, histology (HE, Oil Red O), TEM and RT-qPCR. Viable spheroids were obtained for up to 14 days post-printing and showed multilocular microvacuoles and successful differentiation toward mature adipocytes shown by gene expression analysis. Moreover, spheroids were able to assemble at random in GelMA, creating a macrotissue. Combining the advantage of microtissues to self-assemble and the controlled organization by bioprinting technologies, these ASC spheroids can be useful as building blocks for the engineering of soft tissue implants.