SCIENTIFIC PUBLICATIONS

You are researching: Dental Tissue Engineering
Matching entries: 1 /1
All Groups
AUTHOR Li, Huihua and Chen, Shangsi and Dissanayaka, Waruna Lakmal and Wang, Min
Title Gelatin Methacryloyl/Sodium Alginate/Cellulose Nanocrystal Inks and 3D Printing for Dental Tissue Engineering Applications [Abstract]
Year 2024
Journal/Proceedings ACS Omega
Reftype
DOI/URL DOI
Abstract
In tissue engineering, developing suitable printing inks for fabricating hydrogel scaffolds via 3D printing is of high importance and requires extensive investigation. Currently, gelatin methacryloyl (GelMA)-based inks have been widely used for the construction of 3D-printed hydrogel scaffolds and cell-scaffold constructs for human tissue regeneration. However, many studies have shown that GelMA inks at low polymer concentrations had poor printability, and printed structures exhibited inadequate fidelity. In the current study, new viscoelastic inks composed of gelatin methacryloyl (GelMA), sodium alginate (Alg), and cellulose nanocrystal (CNC) were formulated and investigated, with CNC being used to improve the printability of inks and the fidelity of printed hydrogel structures and Alg being used to form ionically cross-linking polymer networks to enhance the mechanical strength of printed hydrogel structures. Rheological results showed that GelMA/Alg/CNC inks with different Alg-to-CNC ratios possessed good shear-thinning behavior, indicating that GelMA/Alg/CNC inks were suitable for 3D printing. The quantitative evaluation of printability and fidelity showed that a high concentration of CNC improved the printability of GelMA/Alg/CNC inks and concurrently promoted the fidelity of printed GelMA/Alg/CNC hydrogels. On the other hand, compression tests showed that a high concentration of Alg could enhance the mechanical strength of GelMA/Alg/CNC hydrogels due to the increase in cross-link density. Furthermore, GelMA/Alg/CNC hydrogels exhibited good biocompatibility and could promote the proliferation of human dental pulp stem cells (hDPSCs), suggesting their great potential in dental tissue engineering.