You are researching: Carbon Black
Matching entries: 2 /2
All Groups
AUTHOR Pless, Christian J. and Nikzad, Shayla and Papiano, Irene and Gnanadass, Samson and Kadumudi, Firoz B. and Dolatshahi-Pirouz, Alireza and Thomsen, Carsten Eckhart and Lind, Johan U.
Title Soft Electronic Block Copolymer Elastomer Composites for Multi-Material Printing of Stretchable Physiological Sensors on Textiles [Abstract]
Year 2023
Journal/Proceedings Advanced Electronic Materials
Abstract Soft and stretchable electronic materials have a number of unique applications, not least within sensors for monitoring human health. Through development of appropriate inks, micro-extrusion 3D printing offers an appealing route for integrating soft electronic materials within wearable garments. Toward this objective, here a series of conductive inks based on soft thermoplastic styrene–ethylene–butylene–styrene elastomers combined with silver micro-flakes, carbon black nanoparticles, or poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer additives, is developed. Their electrical and mechanical properties are systematically compared and found to be highly dependent on additive amount and type. Thus, while silver composites offer the highest conductivity, their stretchability is far inferior to carbon black composites, which can maintain conductivity beyond 400% strain. The PEDOT composites are the least conductive and stretchable but display unique properties due to their propensity for ionic conductivity. To integrate these inks, as well as insulating counterparts, into functional designs, a multi-material micro-extrusion 3D printing routine for direct deposition onto stretchable, elastic fabrics is established. As demonstration, prototypes are produced for sensing common health markers including strain, physiological temperatures, and electrocardiograms. Collectively, this work demonstrates multi-material 3D printing of soft styrene–ethylene–butylene–styrene elastomer composites as a versatile method for fabricating soft bio-sensors.
AUTHOR Demirörs, Ahmet F. and Poloni, Erik and Chiesa, Maddalena and Bargardi, Fabio L. and Binelli, Marco R. and Woigk, Wilhelm and de Castro, Lucas D. C. and Kleger, Nicole and Coulter, Fergal B. and Sicher, Alba and Galinski, Henning and Scheffold, Frank and Studart, André R.
Title Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color [Abstract]
Year 2022
Journal/Proceedings Nature Communications
Reftype Demirörs2022
Structural color is frequently exploited by living organisms for biological functions and has also been translated into synthetic materials as a more durable and less hazardous alternative to conventional pigments. Additive manufacturing approaches were recently exploited for the fabrication of exquisite photonic objects, but the angle-dependence observed limits a broader application of structural color in synthetic systems. Here, we propose a manufacturing platform for the 3D printing of complex-shaped objects that display isotropic structural color generated from photonic colloidal glasses. Structurally colored objects are printed from aqueous colloidal inks containing monodisperse silica particles, carbon black, and a gel-forming copolymer. Rheology and Small-Angle-X-Ray-Scattering measurements are performed to identify the processing conditions leading to printed objects with tunable structural colors. Multimaterial printing is eventually used to create complex-shaped objects with multiple structural colors using silica and carbon as abundant and sustainable building blocks.