REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Chalmers University of Technology
Matching entries: 10 /10
All Groups
AUTHOR Apelgren, Peter and Karabulut, Erdem and Amoroso, Matteo and Mantas, Athanasios and Martínez Ávila, Héctor and Kölby, Lars and Kondo, Tetsuo and Toriz, Guillermo and Gatenholm, Paul
Title In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink [Abstract]
Year 2019
Journal/Proceedings ACS Biomaterials Science & Engineering
Reftype
DOI/URL DOI
Abstract
Bacterial nanocellulose (BNC) is a 3D network of nanofibrils exhibiting excellent biocompatibility. Here, we present the aqueous counter collision (ACC) method of BNC disassembly to create bioink with suitable properties for cartilage-specific 3D-bioprinting. BNC was disentangled by ACC, and fibril characteristics were analyzed. Bioink printing fidelity and shear-thinning properties were evaluated. Cell-laden bioprinted grid constructs (5 × 5 × 1 mm3) containing human nasal chondrocytes (10 M mL-1) were implanted in nude mice and explanted after 30 and 60 days. Both ACC and hydrolysis resulted in significantly reduced fiber lengths, with ACC resulting in longer fibrils and fewer negative charges relative to hydrolysis. Moreover, ACC-BNC bioink showed outstanding printability, postprinting mechanical stability, and structural integrity. In vivo, cell-laden structures were rapidly integrated, maintained structural integrity, and showed chondrocyte proliferation, with 32.8 ± 13.8 cells per mm2 observed after 30 days and 85.6 ± 30.0 cells per mm2 at day 60 (p = 0.002). Furthermore, a full-thickness skin graft was attached and integrated completely on top of the 3D-bioprinted construct. The novel ACC disentanglement technique makes BNC biomaterial highly suitable for 3D-bioprinting and clinical translation, suggesting cell-laden 3D-bioprinted ACC-BNC as a promising solution for cartilage repair. Bacterial nanocellulose (BNC) is a 3D network of nanofibrils exhibiting excellent biocompatibility. Here, we present the aqueous counter collision (ACC) method of BNC disassembly to create bioink with suitable properties for cartilage-specific 3D-bioprinting. BNC was disentangled by ACC, and fibril characteristics were analyzed. Bioink printing fidelity and shear-thinning properties were evaluated. Cell-laden bioprinted grid constructs (5 × 5 × 1 mm3) containing human nasal chondrocytes (10 M mL-1) were implanted in nude mice and explanted after 30 and 60 days. Both ACC and hydrolysis resulted in significantly reduced fiber lengths, with ACC resulting in longer fibrils and fewer negative charges relative to hydrolysis. Moreover, ACC-BNC bioink showed outstanding printability, postprinting mechanical stability, and structural integrity. In vivo, cell-laden structures were rapidly integrated, maintained structural integrity, and showed chondrocyte proliferation, with 32.8 ± 13.8 cells per mm2 observed after 30 days and 85.6 ± 30.0 cells per mm2 at day 60 (p = 0.002). Furthermore, a full-thickness skin graft was attached and integrated completely on top of the 3D-bioprinted construct. The novel ACC disentanglement technique makes BNC biomaterial highly suitable for 3D-bioprinting and clinical translation, suggesting cell-laden 3D-bioprinted ACC-BNC as a promising solution for cartilage repair.
AUTHOR Markstedt, Kajsa and Håkansson, Karl and Toriz, Guillermo and Gatenholm, Paul
Title Materials from trees assembled by 3D printing – Wood tissue beyond nature limits [Abstract]
Year 2019
Journal/Proceedings Applied Materials Today
Reftype
DOI/URL URL DOI
Abstract
Materials from trees have the potential to replace fossil based and other non-sustainable materials in everyday products, thus transforming the society back to a bioeconomy. This paper presents a 3D printing platform which mimics wood biogenesis for the assembly of wood biopolymers into wood-like hierarchical composites. The genome was substituted with G-code, the programming language which controls how the 3D printer assembles material. The rosette was replaced by the printer head for extrusion of cellulose. Instead of microtubules guiding the alignment of cellulose, the printing direction was guided by an x/y stage, thus mimicking the microfibril angle. The printed structures were locked by an enzymatic crosslinking reaction similar to what occurs in the cell wall upon lignification. Hierarchical structures characteristic for wood were designed and printed with control of density, swelling and directional strength. Accelerating the development of the 3D printing technology helps realize the circular bioeconomy where garments, packaging, furniture and entire houses are manufactured by 3D printing wood.
AUTHOR Pedrotty, Dawn M. and Volodymyr, Kuzmenko and Erdem, Karabulut and Sugrue Alan, M. and Christopher, Livia and Vaidya Vaibhav, R. and McLeod Christopher, J. and Asirvatham Samuel, J. and Paul, Gatenholm and Suraj, Kapa
Title Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium
Year 2019
Journal/Proceedings Circulation: Arrhythmia and Electrophysiology
Reftype
DOI/URL DOI
AUTHOR Kuzmenko, Volodymyr and Karabulut, Erdem and Pernevik, Elin and Enoksson, Peter and Gatenholm, Paul
Title Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines [Abstract]
Year 2018
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
Neural tissue engineering (TE), an innovative biomedical method of brain study, is very dependent on scaffolds that support cell development into a functional tissue. Recently, 3D patterned scaffolds for neural TE have shown significant positive effects on cells by a more realistic mimicking of actual neural tissue. In this work, we present a conductive nanocellulose-based ink for 3D printing of neural TE scaffolds. It is demonstrated that by using cellulose nanofibrils and carbon nanotubes as ink constituents, it is possible to print guidelines with a diameter below 1 mm and electrical conductivity of 3.8 × 10−1 S cm−1. The cell culture studies reveal that neural cells prefer to attach, proliferate, and differentiate on the 3D printed conductive guidelines. To our knowledge, this is the first research effort devoted to using cost-effective cellulosic 3D printed structures in neural TE, and we suppose that much more will arise in the near future.
AUTHOR Nguyen, Duong and Hägg, Daniel and Forsman, Alma and Ekholm, Josefine and Nimkingratana, Puwapong and Brantsing, Camilla and Kalogeropoulos, Theodoros and Zaunz, Samantha and Concaro, Sebastian and Brittberg, Mats and Lindahl, Anders and Gatenholm, Paul and Enejder, Annika and Simonsson, Stina
Title Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink [Abstract]
Year 2017
Journal/Proceedings Scientific Reports
Reftype
DOI/URL DOI
Abstract
Cartilage lesions can progress into secondary osteoarthritis and cause severe clinical problems in numerous patients. As a prospective treatment of such lesions, human-derived induced pluripotent stem cells (iPSCs) were shown to be 3D bioprinted into cartilage mimics using a nanofibrillated cellulose (NFC) composite bioink when co-printed with irradiated human chondrocytes. Two bioinks were investigated: NFC with alginate (NFC/A) or hyaluronic acid (NFC/HA). Low proliferation and phenotypic changes away from pluripotency were seen in the case of NFC/HA. However, in the case of the 3D-bioprinted NFC/A (60/40, dry weight % ratio) constructs, pluripotency was initially maintained, and after five weeks, hyaline-like cartilaginous tissue with collagen type II expression and lacking tumorigenic Oct4 expression was observed in 3D -bioprinted NFC/A (60/40, dry weight % relation) constructs. Moreover, a marked increase in cell number within the cartilaginous tissue was detected by 2-photon fluorescence microscopy, indicating the importance of high cell densities in the pursuit of achieving good survival after printing. We conclude that NFC/A bioink is suitable for bioprinting iPSCs to support cartilage production in co-cultures with irradiated chondrocytes.
AUTHOR Henriksson, I. and Gatenholm, P. and Hägg, D. A.
Title Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds [Abstract]
Year 2017
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
Compared to standard 2D culture systems, new methods for 3D cell culture of adipocytes could provide more physiologically accurate data and a deeper understanding of metabolic diseases such as diabetes. By resuspending living cells in a bioink of nanocellulose and hyaluronic acid, we were able to print 3D scaffolds with uniform cell distribution. After one week in culture, cell viability was 95%, and after two weeks the cells displayed a more mature phenotype with larger lipid droplets than standard 2D cultured cells. Unlike cells in 2D culture, the 3D bioprinted cells did not detach upon lipid accumulation. After two weeks, the gene expression of the adipogenic marker genes PPAR γ and FABP4 was increased 2.0- and 2.2-fold, respectively, for cells in 3D bioprinted constructs compared with 2D cultured cells. Our 3D bioprinted culture system produces better adipogenic differentiation of mesenchymal stem cells and a more mature cell phenotype than conventional 2D culture systems.
AUTHOR {{'{A}}}vila, H{'{e}}ctor Mart{'{i}}nez and Schwarz, Silke and Rotter, Nicole and Gatenholm, Paul
Title 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration [Abstract]
Year 2016
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Abstract Auricular cartilage tissue engineering (TE) aims to provide an effective treatment for patients with acquired or congenital auricular defects. Bioprinting has gained attention in several {TE} strategies for its ability to spatially control the placement of cells, biomaterials and biological molecules. Although considerable advances have been made to bioprint complex 3D tissue analogues, the development of hydrogel bioinks with good printability and bioactive properties must improve in order to advance the translation of 3D bioprinting into the clinic. In this study, the biological functionality of a bioink composed of nanofibrillated cellulose and alginate (NFC-A) is extensively evaluated for auricular cartilage TE. 3D bioprinted auricular constructs laden with human nasal chondrocytes (hNC) are cultured for up to 28 days and the redifferentiation capacity of hNCs in NFC-A is studied on gene expression as well as on protein levels. 3D bioprinting with NFC-A bioink facilitates the biofabrication of cell-laden, patient-specific auricular constructs with an open inner structure, high cell density and homogenous cell distribution. The cell-laden NFC-A constructs exhibit an excellent shape and size stability as well as an increase in cell viability and proliferation during in vitro culture. Furthermore, NFC-A bioink supports the redifferentiation of hNCs and neo-synthesis of cartilage-specific extracellular matrix components. This demonstrated that NFC-A bioink supports redifferentiation of hNCs while offering proper printability in a biologically relevant aqueous 3D environment, making it a promising tool for auricular cartilage {TE} and many other biomedical applications.
AUTHOR M{"u}ller, Michael and {"O}zt{"u}rk, Ece and Arlov, {O}ystein and Gatenholm, Paul and Zenobi-Wong, Marcy
Title Alginate Sulfate--Nanocellulose Bioinks for Cartilage Bioprinting Applications [Abstract]
Year 2016
Journal/Proceedings Annals of Biomedical Engineering
Reftype
DOI/URL DOI
Abstract
One of the challenges of bioprinting is to identify bioinks which support cell growth, tissue maturation, and ultimately the formation of functional grafts for use in regenerative medicine. The influence of this new biofabrication technology on biology of living cells, however, is still being evaluated. Recently we have identified a mitogenic hydrogel system based on alginate sulfate which potently supports chondrocyte phenotype, but is not printable due to its rheological properties (no yield point). To convert alginate sulfate to a printable bioink, it was combined with nanocellulose, which has been shown to possess very good printability. The alginate sulfate/nanocellulose ink showed good printing properties and the non-printed bioink material promoted cell spreading, proliferation, and collagen II synthesis by the encapsulated cells. When the bioink was printed, the biological performance of the cells was highly dependent on the nozzle geometry. Cell spreading properties were maintained with the lowest extrusion pressure and shear stress. However, extruding the alginate sulfate/nanocellulose bioink and chondrocytes significantly compromised cell proliferation, particularly when using small diameter nozzles and valves.
AUTHOR Håkansson, Karl M. O. and Henriksson, Ida C. and de la Peña Vázquez, Cristina and Kuzmenko, Volodymyr and Markstedt, Kajsa and Enoksson, Peter and Gatenholm, Paul
Title Solidification of 3D Printed Nanofibril Hydrogels into Functional 3D Cellulose Structures [Abstract]
Year 2016
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Cellulose nanofibrils isolated from trees have the potential to be used as raw material for future sustainable products within the areas of packaging, textiles, biomedical devices, and furniture. However, one unsolved problem has been to convert the nanofibril-hydrogel into a dry 3D structure. In this study, 3D printing is used to convert a cellulose nanofibril hydrogel into 3D structures with controlled architectures. Such structures collapse upon drying, but by using different drying processes the collapse can be controlled and the 3D structure can be preserved upon solidification. In addition, a conductive cellulose nanofibril ink is fabricated by adding carbon nanotubes. These findings enable the use of wood derived materials in 3D printing for fabrication of sustainable commodities such as packaging, textiles, biomedical devices, and furniture with conductive parts. Furthermore, with the introduction of biopolymers into 3D printing, the 3D printing technology itself can finally be regarded as sustainable.
AUTHOR Markstedt, Kajsa and Mantas, Athanasios and Tournier, Ivan and Mart{'{i}}nez {{'{A}}}vila, H{'{e}}ctor and H{"{a}}gg, Daniel and Gatenholm, Paul
Title 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications [Abstract]
Year 2015
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning properties of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs. The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning properties of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs.