SCIENTIFIC PUBLICATIONS

You are researching: Pectin
Matching entries: 4 /4
All Groups
AUTHOR Cernencu, Alexandra I. and Vlasceanu, George M. and Serafim, Andrada and Pircalabioru, Gratiela and Ionita, Mariana
Title 3D double-reinforced graphene oxide – nanocellulose biomaterial inks for tissue engineered constructs [Abstract]
Year 2023
Journal/Proceedings RSC Adv.
Reftype
DOI/URL DOI
Abstract
The advent of improved fabrication technologies{,} particularly 3D printing{,} has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However{,} inks made from natural polymers often fall short in terms of mechanical strength{,} stability{,} and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks{,} bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity{,} 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25{,} 0.5{,} and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting{,} the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.
AUTHOR Tarun Agarwal and Marco Costantini and Tapas Kumar Maiti
Title Extrusion 3D printing with Pectin-based ink formulations: Recent trends in tissue engineering and food manufacturing [Abstract]
Year 2021
Journal/Proceedings Biomedical Engineering Advances
Reftype
DOI/URL URL DOI
Abstract
3D printing technologies are rapidly revolutionizing all manufacturing sectors due to their ability to create objects with complex geometries in a reproducible and automated manner using material/cell-based formulations, precisely termed printing inks. In this regard, pectin, a naturally occurring plant polysaccharide, has been proposed as a potential component of ink formulations. In this mini-review, we would overview the most recent advances made with pectin-based inks in the fields of tissue engineering and food manufacturing. We also discuss various strategies used to formulate 3D printable pectin inks. Finally, various challenges and prospects for future development are discussed.
AUTHOR Balaji Mahendiran and Shalini Muthusamy and Sowndarya Sampath and S.N. Jaisankar and Ketul C. Popat and R. Selvakumar and Gopal Shankar Krishnakumar
Title Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review [Abstract]
Year 2021
Journal/Proceedings International Journal of Biological Macromolecules
Reftype
DOI/URL URL DOI
Abstract
Biofabrication by three-dimensional (3D) printing has been an attractive technology in harnessing the possibility to print anatomical shaped native tissues with controlled architecture and resolution. 3D printing offers the possibility to reproduce complex microarchitecture of native tissues by printing live cells in a layer by layer deposition to provide a biomimetic structural environment for tissue formation and host tissue integration. Plant based biomaterials derived from green and sustainable sources have represented to emulate native physicochemical and biological cues in order to direct specific cellular response and formation of new tissues through biomolecular recognition patterns. This comprehensive review aims to analyze and identify the most commonly used plant based bioinks for 3D printing applications. An overview on the role of different plant based biomaterial of terrestrial origin (Starch, Nanocellulose and Pectin) and marine origin (Ulvan, Alginate, Fucoidan, Agarose and Carrageenan) used for 3D printing applications are discussed elaborately. Furthermore, this review will also emphasis in the functional aspects of different 3D printers, appropriate printing material, merits and demerits of numerous plant based bioinks in developing 3D printed tissue-like constructs. Additionally, the underlying potential benefits, limitations and future perspectives of plant based bioinks for tissue engineering (TE) applications are also discussed.
AUTHOR Cernencu, Alexandra I. and Lungu, Adriana and Stancu, Izabela-Cristina and Serafim, Andrada and Heggset, Ellinor and Syverud, Kristin and Iovu, Horia
Title Bioinspired 3D printable pectin-nanocellulose ink formulations [Abstract]
Year 2019
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
The assessment of several ink formulations for 3D printing based on two natural macromolecular compounds is presented. In the current research we have exploited the fast crosslinking potential of pectin and the remarkable shear-thinning properties of carboxylated cellulose nanofibrils, which is known to induce a desired viscoelastic behavior. Prior to 3D printing, the viscoelastic properties of the polysaccharide inks were evaluated by rheological measurements and injectability tests. The reliance of the printing parameters on the ink composition was established through one-dimensional lines printing, the base units of 3D-structures. The performance of the 3D-printed structures after ionic cross-linking was evaluated in terms of mechanical properties and rehydration behavior. MicroCT was also used to evaluate the morphology of the 3D-printed objects regarding the effect of pectin/nanocellulose ratio on the geometrical features of scaffolds. The proportionality between the two polymers proved to be the determining factor for the firmness and strength of the printed objects.