You are researching: Alumina
Matching entries: 3 /3
All Groups
AUTHOR Zhang, Danwei and Jonhson, Win and Herng, Tun Seng and Xu, Xi and Liu, Xiaojing and Pan, Liang-ming and He, Hui and Ding, Jun
Title High Temperature Co-firing of 3D-Printed Al-ZnO/Al2O3 Multi-Material Two-Phase Flow Sensor [Abstract]
Year 2021
Journal/Proceedings Journal of Materiomics
Sensors are crucial in the understanding of machines working under high temperatures and high-pressure conditions. Current devices utilize polymeric materials as electrical insulators which pose a challenge in the device’s lifespan. Ceramics, on the other hand, is robust and able to withstand high temperature and pressure. For such applications, a co-fired ceramic device which can provide both electrical conductivity and insulation is beneficial and acts as a superior candidate for sensor devices. In this paper, we propose a novel fabrication technique of complex multi-ceramics structures via 3D printing. This fabrication methodology increases both the geometrical complexity and the device’s shape precision. Structural ceramics (alumina) was employed as the electrical insulator whilst providing mechanical rigidity while a functional ceramic (alumina-doped zinc oxide) was employed as the electrically conductive material. The addition of sintering additives, tailoring the printing pastes’ solid loadings and heat treatment profile resolves multi-materials printing challenges such as shrinkage disparity and densification matching. Through high-temperature co-firing of ceramics (HTCC) technology, dense high quality functional multi-ceramics structures are achieved. The proposed fabrication methodology paves the way for multi-ceramics sensors to be utilized in high temperature and pressure systems in the near future.
AUTHOR Minas, Clara and Carnelli, Davide and Tervoort, Elena and Studart, André R.
Title 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics [Abstract]
Year 2016
Journal/Proceedings Advanced Materials
Bulk hierarchical porous ceramics with unprecedented strength-to-weight ratio and tunable pore sizes across three different length scales are printed by direct ink writing. Such an extrusion-based process relies on the formulation of inks in the form of particle-stabilized emulsions and foams that are sufficiently stable to resist coalescence during printing.
AUTHOR Kokkinis, Dimitri and Schaffner, Manuel and Studart, Andr{'{e}} R.
Title Multimaterial magnetically assisted 3D printing of composite materials
Year 2015
Journal/Proceedings Nature Communications