REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Vascularization
Matching entries: 8 /8
All Groups
AUTHOR Cunniffe, Gráinne and Gonzalez-Fernandez, Tomas and Daly, Andrew and Nelson Sathy, Binulal and Jeon, Oju and Alsberg, Eben and J. Kelly, Daniel
Title Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering [Abstract]
Year 2017
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-g-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bonemarrow-derived mesenchymal stemcells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization andmineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.
AUTHOR Daly, Andrew C. and Pitacco, Pierluca and Nulty, Jessica and Cunniffe, Gráinne M. and Kelly, Daniel J.
Title 3D printed microchannel networks to direct vascularisation during endochondral bone repair [Abstract]
Year 2018
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.
AUTHOR Nulty, Jessica and Freeman, Fiona E. and Browe, David C. and Burdis, Ross and Ahern, Daniel P. and Pitacco, Pierluca and Lee, Yu Bin and Alsberg, Eben and Kelly, Daniel J.
Title 3D Bioprinting of prevascularised implants for the repair of critically-sized bone defects [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
For 3D bioprinted tissues to be scaled-up to clinically relevant sizes, effective prevascularisation strategies are required to provide the necessary nutrients for normal metabolism and to remove associated waste by-products. The aim of this study was to develop a bioprinting strategy to engineer prevascularised tissues in vitro and to investigate the capacity of such constructs to enhance the vascularisation and regeneration of large bone defects in vivo. From a screen of different bioinks, a fibrin-based hydrogel was found to best support human umbilical vein endothelial cell (HUVEC) sprouting and the establishment of a microvessel network. When this bioink was combined with HUVECs and supporting human bone marrow stem/stromal cells (hBMSCs), these microvessel networks persisted in vitro. Furthermore, only bioprinted tissues containing both HUVECs and hBMSCs, that were first allowed to mature in vitro, supported robust blood vessel development in vivo. To assess the therapeutic utility of this bioprinting strategy, these bioinks were used to prevascularise 3D printed polycaprolactone (PCL) scaffolds, which were subsequently implanted into critically-sized femoral bone defects in rats. Microcomputed tomography (µCT) angiography revealed increased levels of vascularisation in vivo, which correlated with higher levels of new bone formation. Such prevascularised constructs could be used to enhance the vascularisation of a range of large tissue defects, forming the basis of multiple new bioprinted therapeutics. Statement of Significance This paper demonstrates a versatile 3D bioprinting technique to improve the vascularisation of tissue engineered constructs and further demonstrates how this method can be incorporated into a bone tissue engineering strategy to improve vascularisation in a rat femoral defect model.
AUTHOR Oliveira, Hugo and Médina, Chantal and Stachowicz, Marie-Laure and Paiva dos Santos, Bruno and Chagot, Lise and Dusserre, Nathalie and Fricain, Jean-Christophe
Title Extracellular matrix (ECM)-derived bioinks designed to foster vasculogenesis and neurite outgrowth: Characterization and bioprinting [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration approaches. In this scope, the lack of suitable biomaterials that can be efficiently formulated as printable bioinks, while supporting specific cellular events, is currently considered as one of the main limitations in the field. Indeed, extracellular matrix (ECM)-derived biomaterials formulated to enable printability and support cellular response, for instance via integrin binding, are eagerly awaited in the field of bioprinting. Several bioactive laminin sequences, including peptides such as YIGSR and IKVAV, have been identified to promote endothelial cell attachment and/or neurite outgrowth and guidance, respectively. Here, we show the development of two distinct bioinks, designed to foster vasculogenesis or neurogenesis, based on methacrylated collagen and hyaluronic acid (CollMA and HAMA, respectively), both relevant ECM-derived polymers, and on their combination with cysteine-flanked laminin-derived peptides. Using this strategy, it was possible to optimize the bioink printability, by tuning CollMA and HAMA concentration and ratio, and modulate their bioactivity, through adjustments in the cell-active peptide sequence spatial density, without compromising cell viability. We demonstrated that cell-specific bioinks could be customized for the bioprinting of both human umbilical vein cord endothelial cells (HUVECs) or adult rat sensory neurons from the dorsal root ganglia, and could stimulate both vasculogenesis and neurite outgrowth, respectively. This approach holds great potential as it can be tailored to other cellular models, due to its inherent capacity to accommodate different peptide compositions and to generate complex peptide mixtures and/or gradients.
AUTHOR Lagatuz, M. and Vyas, R. J. and Predovic, M. and Lim, S. and Jacobs, N. and Martinho, M. and Valizadegan, H. and Kao, D. and Oza, N. and Theriot, C. A. and Zanello, S. B. and Taibbi, G. and Vizzeri, G. and Dupont, M. and Grant, M. B. and Lindner, D. J. and Reinecker, H.-C. and Pinhas, A. and Chui, T. Y. and Rosen, R. B. and Moldovan, N. and Vickerman, M. B. and Radhakrishnan, K. and Parsons-Wingerter, P.
Title Vascular Patterning as Integrative Readout of Complex Molecular and Physiological Signaling by VESsel GENeration Analysis [Abstract]
Year 2021
Journal/Proceedings J Vasc Res
Reftype
DOI/URL DOI
Abstract
The molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA’s globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites. Upon input of a binary vascular image, automated output includes informative vascular maps and quantification of parameters such as tortuosity, fractal dimension, vessel diameter, area, length, number, and branch point. Previous research has demonstrated that cytokines and therapeutics such as vascular endothelial growth factor, basic fibroblast growth factor (fibroblast growth factor-2), transforming growth factor-beta-1, and steroid triamcinolone acetonide specify unique “fingerprint” or “biomarker” vascular patterns that integrate dominant signaling with physiological response. In vivo experimental examples described here include vascular response to keratinocyte growth factor, a novel vessel tortuosity factor; angiogenic inhibition in humanized tumor xenografts by the anti-angiogenesis drug leronlimab; intestinal vascular inflammation with probiotic protection by Saccharomyces boulardii, and a workflow programming of vascular architecture for 3D bioprinting of regenerative tissues from 2D images. Microvascular remodeling in the human retina is described for astronaut risks in microgravity, vessel tortuosity in diabetic retinopathy, and venous occlusive disease.
AUTHOR Figueiredo, Lara and Le Visage, Catherine and Weiss, Pierre and Yang, Jing
Title Quantifying Oxygen Levels in 3D Bioprinted Cell-Laden Thick Constructs with Perfusable Microchannel Networks [Abstract]
Year 2020
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The survival and function of thick tissue engineered implanted constructs depends on pre-existing, embedded, functional, vascular-like structures that are able to integrate with the host vasculature. Bioprinting was employed to build perfusable vascular-like networks within thick constructs. However, the improvement of oxygen transportation facilitated by these vascular-like networks was directly quantified. Using an optical fiber oxygen sensor, we measured the oxygen content at different positions within 3D bioprinted constructs with and without perfusable microchannel networks. Perfusion was found to play an essential role in maintaining relatively high oxygen content in cell-laden constructs and, consequently, high cell viability. The concentration of oxygen changes following switching on and off the perfusion. Oxygen concentration depletes quickly after pausing perfusion but recovers rapidly after resuming the perfusion. The quantification of oxygen levels within cell-laden hydrogel constructs could provide insight into channel network design and cellular responses.
AUTHOR Iordache, F. and Alexandru, D. and Pisoschi, A. M. and PoP, A.
Title 3D Bioprinting of Blood Vessel Model Using Collagen-Hyaluronic Acid Hydrogel [Abstract]
Year 2019
Journal/Proceedings AgroLife Scientific Journal
Reftype
DOI/URL URL
Abstract
3D bioprinting is a technology that supports fabrication of biomimetic tissues with complex architecture. It has application in drug discovery, tissue development, and regenerative medicine. The aim of this study was to create a blood vessel model correlating properties of collagen-hyaluronic acid hydrogel with bioprinter parameters such as speed rate, pressure, number of layers, nozzle diameter, and temperature. The blood vessel model was created using BioCAD software and bioprinted by extrusion technology using collagen-hyaluronic acid hydrogel. We analyzed the water uptake, enzymatic degradation and morphology by scanning electron microscopy and after staining with Hematoxylin and Eosin (H&E) and Trichromic Masson dyes. The results showed that the blood vessel constructs have 2.46 mm (±0.41) mean diameter, 1.4 mm (±0.10) mean thick wall, and 2.8 mm (±0.05) mean height which is appropriate with the model created in the BioCAD software. The optimal parameters for these constructs were: 1.1 bar pressure, 1mm/sec speed rate, 18°C temperature, 0.2 mm nozzle diameter, and 10 numbers of layers. Increasing hydrogel weight by 22% at 2 hours after immersion in PBS suggesting that is hydrophilic. Furthermore, decreasing by up to 47.2% in the presence of collagenase (50 μg/ml) shows that is biodegradable. H&E and Trichromic Masson staining showed that collagen-hyaluronic acid hydrogel organized in a network with pores dimension that could support cells growth and differentiation. In conclusion, our scaffold mimics the blood vessel structure, further experiment will be addressed for study the biocompatibility of these scaffold with mesenchymal stem cells.
AUTHOR Suntornnond, R. and Tan, E. Y. S. and An, J. and Chua, C. K.
Title A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures [Abstract]
Year 2017
Journal/Proceedings Scientific Reports
Reftype
DOI/URL URL DOI
Abstract
Vascularization is one major obstacle in bioprinting and tissue engineering. In order to create thick tissues or organs that can function like original body parts, the presence of a perfusable vascular system is essential. However, it is challenging to bioprint a hydrogel-based three-dimensional vasculature-like structure in a single step. In this paper, we report a new hydrogel-based composite that offers impressive printability, shape integrity, and biocompatibility for 3D bioprinting of a perfusable complex vasculature-like structure. The hydrogel composite can be used on a non-liquid platform and is printable at human body temperature. Moreover, the hydrogel composite supports both cell proliferation and cell differentiation. Our results represent a potentially new vascularization strategy for 3D bioprinting and tissue engineering.