REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Paeoniflorin
Matching entries: 1 /1
All Groups
AUTHOR Yu, Haiyang and Gong, Wen and Mei, Junhao and Qin, Lihao and Piao, Zeyu and You, Deshu and Gu, Wenxian and Jia, Zhongzhi
Title The efficacy of a paeoniflorin-sodium alginate-gelatin skin scaffold for the treatment of diabetic wound: An in vivo study in a rat model [Abstract]
Year 2022
Journal/Proceedings Biomedicine & Pharmacotherapy
Reftype
DOI/URL URL DOI
Abstract
Objective To investigate the efficacy of a paeoniflorin-sodium alginate (SA)-gelatin skin scaffold for treating diabetic wound in a rat model. Methods Bioinks were prepared using various percentages of paeoniflorin in the total weight of a solution containing SA and gelatin. Skin scaffolds containing 0%, 1%, 3%, 5%, and 10% paeoniflorin were printed using 3D bioprinting technology, and scaffold microstructure was observed with scanning electron microscopy. Skin scaffolds were then used in rats with diabetic wounds. H&E staining, Masson staining, and immunohistochemical staining for IL-1β and CD31 were performed on days 7 and 14. Results All skin scaffolds had a mesh-like structure with uniform pore distribution. Wounds healed well in each group, with the 1% and 3% groups demonstrating the most complete healing. H&E staining showed that skin accessory organs had appeared in each group. On day 7, collagen deposition in the 3% group was higher than in the other groups (P<0.05), and IL-1β infiltration was lower in the 10% group than in the 3% group (P = 0.002). On day 14, IL-1β infiltration was not significantly different between the 10% and 3% groups (P = 0.078). The CD31 level was higher in the 3% group than in the other groups on days 7 and 14 (P<0.05). Conclusion A 3% paeoniflorin-SA-gelatin skin scaffold promoted the healing of diabetic wounds in rats. This scaffold promoted collagen deposition and microvascular regeneration and demonstrated anti-inflammatory properties, suggesting that this scaffold type could be used to treat diabetic wounds.