REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Pneumatic Strand Dispenser
Matching entries: 167 /167
All Groups
AUTHOR Habelt, Bettina and Wirth, Christopher and Afanasenkau, Dzmitry and Mihaylova, Lyudmila and Winter, Christine and Arvaneh, Mahnaz and Minev, Ivan R. and Bernhardt, Nadine
Title A Multimodal Neuroprosthetic Interface to Record, Modulate and Classify Electrophysiological Biomarkers Relevant to Neuropsychiatric Disorders [Abstract]
Year 2021
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Most mental disorders, such as addictive diseases or schizophrenia, are characterized by impaired cognitive function and behavior control originating from disturbances within prefrontal neural networks. Their often chronic reoccurring nature and the lack of efficient therapies necessitate the development of new treatment strategies. Brain-computer interfaces, equipped with multiple sensing and stimulation abilities, offer a new toolbox whose suitability for diagnosis and therapy of mental disorders has not yet been explored. This study, therefore, aimed to develop a biocompatible and multimodal neuroprosthesis to measure and modulate prefrontal neurophysiological features of neuropsychiatric symptoms. We used a 3D-printing technology to rapidly prototype customized bioelectronic implants through robot-controlled deposition of soft silicones and a conductive platinum ink. We implanted the device epidurally above the medial prefrontal cortex of rats and obtained auditory event-related brain potentials in treatment-naïve animals, after alcohol administration and following neuromodulation through implant-driven electrical brain stimulation and cortical delivery of the anti-relapse medication naltrexone. Towards smart neuroprosthetic interfaces, we furthermore developed machine learning algorithms to autonomously classify treatment effects within the neural recordings. The neuroprosthesis successfully captured neural activity patterns reflecting intact stimulus processing and alcohol-induced neural depression. Moreover, implant-driven electrical and pharmacological stimulation enabled successful enhancement of neural activity. A machine learning approach based on stepwise linear discriminant analysis was able to deal with sparsity in the data and distinguished treatments with high accuracy. Our work demonstrates the feasibility of multimodal bioelectronic systems to monitor, modulate and identify healthy and affected brain states with potential use in a personalized and optimized therapy of neuropsychiatric disorders.
AUTHOR Bouwmeester, Manon C. and Bernal, Paulina N. and Oosterhoff, Loes A. and van Wolferen, Monique E. and Lehmann, Vivian and Vermaas, Monique and Buchholz, Maj-Britt and Peiffer, Quentin C. and Malda, Jos and van der Laan, Luc J. W. and Kramer, Nynke I. and Schneeberger, Kerstin and Levato, Riccardo and Spee, Bart
Title Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies [Abstract]
Year 2021
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract There is a need for long-lived hepatic in vitro models to better predict drug induced liver injury (DILI). Human liver-derived epithelial organoids are a promising cell source for advanced in vitro models. Here, organoid technology is combined with biofabrication techniques, which holds great potential for the design of in vitro models with complex and customizable architectures. Here, porous constructs with human hepatocyte-like cells derived from organoids are generated using extrusion-based printing technology. Cell viability of bioprinted organoids remains stable for up to ten days (88–107% cell viability compared to the day of printing). The expression of hepatic markers, transporters, and phase I enzymes increased compared to undifferentiated controls, and is comparable to non-printed controls. Exposure to acetaminophen, a well-known hepatotoxic compound, decreases cell viability of bioprinted liver organoids to 21–51% (p < 0.05) compared to the start of exposure, and elevated levels of damage marker miR-122 are observed in the culture medium, indicating the potential use of the bioprinted constructs for toxicity testing. In conclusion, human liver-derived epithelial organoids can be combined with a biofabrication approach, thereby paving the way to create perfusable, complex constructs which can be used as toxicology- and disease-models.
AUTHOR He, Shaolong and Radeke, Carmen and Jacobsen, Jette and Lind, Johan Ulrik and Mu, Huiling
Title Multi-material 3D printing of programmable and stretchable oromucosal patches for delivery of saquinavir [Abstract]
Year 2021
Journal/Proceedings International Journal of Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Oromucosal patches for drug delivery allow fast onset of action and ability to circumvent hepatic first pass metabolism of drugs. While conventional fabrication methods such as solvent casting or hot melt extrusion are ideal for scalable production of low-cost delivery patches, these methods chiefly allow for simple, homogenous patch designs. As alternative, a multi-material direct-ink-write 3D printing for rapid fabrication of complex oromucosal patches with unique design features was demonstrated in the present study. Specifically, three print-materials: an acidic saquinavir-loaded hydroxypropyl methylcellulose ink, an alkaline effervescent sodium carbonate-loaded ink, and a methyl cellulose backing material were combined in various designs. The CO2 content and pH of the microenvironment were controlled by adjusting the number of alkaline layers in the patch. Additionally, the rigid and brittle patches were converted to compliant and stretchable patches by implementing mesh-like designs. Our results illustrate how 3D printing can be used for rapid design and fabrication of multifunctional or customized oromucosal patches with tailored dosages and changed drug permeation.
AUTHOR Asulin, Masha and Michael, Idan and Shapira, Assaf and Dvir, Tal
Title One-Step 3D Printing of Heart Patches with Built-In Electronics for Performance Regulation [Abstract]
Year 2021
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Three dimensional (3D) printing of heart patches usually provides the ability to precisely control cell location in 3D space. Here, one-step 3D printing of cardiac patches with built-in soft and stretchable electronics is reported. The tissue is simultaneously printed using three distinct bioinks for the cells, for the conducting parts of the electronics and for the dielectric components. It is shown that the hybrid system can withstand continuous physical deformations as those taking place in the contracting myocardium. The electronic patch is flexible, stretchable, and soft, and the electrodes within the printed patch are able to monitor the function of the engineered tissue by providing extracellular potentials. Furthermore, the system allowed controlling tissue function by providing electrical stimulation for pacing. It is envisioned that such transplantable patches may regain heart contractility and allow the physician to monitor the implant function as well as to efficiently intervene from afar when needed.
AUTHOR Kajtez, Janko and Buchmann, Sebastian and Vasudevan, Shashank and Birtele, Marcella and Rocchetti, Stefano and Pless, Christian Jonathan and Heiskanen, Arto and Barker, Roger A. and Martínez-Serrano, Alberto and Parmar, Malin and Lind, Johan Ulrik and Emnéus, Jenny
Title 3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices [Abstract]
Year 2020
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.
AUTHOR Monferrer, Ezequiel and Martín-Vañó, Susana and Carretero, Aitor and García-Lizarribar, Andrea and Burgos-Panadero, Rebeca and Navarro, Samuel and Samitier, Josep and Noguera, Rosa
Title A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior [Abstract]
Year 2020
Journal/Proceedings Scientific Reports
Reftype Monferrer2020
DOI/URL DOI
Abstract
Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young’s modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
AUTHOR Benmeridja, Lara and De Moor, Lise and De Maere, Elisabeth and Vanlauwe, Florian and Ryx, Michelle and Tytgat, Liesbeth and Vercruysse, Chris and Dubruel, Peter and Van Vlierberghe, Sandra and Blondeel, Phillip and Declercq, Heidi
Title High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting [Abstract]
Year 2020
Journal/Proceedings Journal of Tissue Engineering and Regenerative Medicine
Reftype
DOI/URL DOI
Abstract
Abstract For patients with soft tissue defects, repair with autologous in vitro engineered adipose tissue could be a promising alternative to current surgical therapies. A volume-persistent engineered adipose tissue construct under in vivo conditions can only be achieved by early vascularization after transplantation. The combination of 3D bioprinting technology with self-assembling microvascularized units as building blocks can potentially answer the need for a microvascular network. In the present study, co-culture spheroids combining adipose-derived stem cells (ASC) and human umbilical vein endothelial cells (HUVEC) were created with an ideal geometry for bioprinting. When applying the favourable seeding technique and condition, compact viable spheroids were obtained, demonstrating high adipogenic differentiation and capillary-like network formation after 7 and 14 days of culture, as shown by live/dead analysis, immunohistochemistry and RT-qPCR. Moreover, we were able to successfully 3D bioprint the encapsulated spheroids, resulting in compact viable spheroids presenting capillary-like structures, lipid droplets and spheroid outgrowth after 14 days of culture. This is the first study that generates viable high-throughput (pre-)vascularized adipose microtissues as building blocks for bioprinting applications using a novel ASC/HUVEC co-culture spheroid model, which enables both adipogenic differentiation while simultaneously supporting the formation of prevascular-like structures within engineered tissues in vitro.
AUTHOR Afanasenkau, Dzmitry and Kalinina, Daria and Lyakhovetskii, Vsevolod and Tondera, Christoph and Gorsky, Oleg and Moosavi, Seyyed and Pavlova, Natalia and Merkulyeva, Natalia and Kalueff, Allan V. and Minev, Ivan R. and Musienko, Pavel
Title Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces [Abstract]
Year 2020
Journal/Proceedings Nature Biomedical Engineering
Reftype Afanasenkau2020
DOI/URL DOI
Abstract
Neuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability. This technology might enable personalized bioelectronics for neuroprosthetic applications.
AUTHOR Noor, Nadav and Shapira, Assaf and Edri, Reuven and Gal, Idan and Wertheim, Lior and Dvir, Tal
Title 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts [Abstract]
Year 2019
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Generation of thick vascularized tissues that fully match the patient still remains an unmet challenge in cardiac tissue engineering. Here, a simple approach to 3D-print thick, vascularized, and perfusable cardiac patches that completely match the immunological, cellular, biochemical, and anatomical properties of the patient is reported. To this end, a biopsy of an omental tissue is taken from patients. While the cells are reprogrammed to become pluripotent stem cells, and differentiated to cardiomyocytes and endothelial cells, the extracellular matrix is processed into a personalized hydrogel. Following, the two cell types are separately combined with hydrogels to form bioinks for the parenchymal cardiac tissue and blood vessels. The ability to print functional vascularized patches according to the patient's anatomy is demonstrated. Blood vessel architecture is further improved by mathematical modeling of oxygen transfer. The structure and function of the patches are studied in vitro, and cardiac cell morphology is assessed after transplantation, revealing elongated cardiomyocytes with massive actinin striation. Finally, as a proof of concept, cellularized human hearts with a natural architecture are printed. These results demonstrate the potential of the approach for engineering personalized tissues and organs, or for drug screening in an appropriate anatomical structure and patient-specific biochemical microenvironment.
AUTHOR Kleger, Nicole and Cihova, Martina and Masania, Kunal and Studart, André R. and Löffler, Jörg F.
Title 3d printing of salt as a template for magnesium with structured porosity [Abstract]
Year 2019
Journal/Proceedings advanced materials
Reftype
DOI/URL DOI
Abstract
Abstract Porosity is an essential feature in a wide range of applications that combine light weight with high surface area and tunable density. Porous materials can be easily prepared with a vast variety of chemistries using the salt-leaching technique. However, this templating approach has so far been limited to the fabrication of structures with random porosity and relatively simple macroscopic shapes. Here, a technique is reported that combines the ease of salt leaching with the complex shaping possibilities given by additive manufacturing (AM). By tuning the composition of surfactant and solvent, the salt-based paste is rheologically engineered and printed via direct ink writing into grid-like structures displaying structured pores that span from the sub-millimeter to the macroscopic scale. As a proof of concept, dried and sintered NaCl templates are infiltrated with magnesium (Mg), which is typically highly challenging to process by conventional AM techniques due to its highly oxidative nature and high vapor pressure. Mg scaffolds with well-controlled, ordered porosity are obtained after salt removal. The tunable mechanical properties and the potential to be predictably bioresorbed by the human body make these Mg scaffolds attractive for biomedical implants and demonstrate the great potential of this additive technique.
AUTHOR Daly, Andrew C. and Kelly, Daniel J.
Title Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers [Abstract]
Year 2019
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Successful tissue engineering requires the generation of human scale implants that mimic the structure, composition and mechanical properties of native tissues. Here, we report a novel biofabrication strategy that enables the engineering of structurally organised tissues by guiding the growth of cellular spheroids within arrays of 3D printed polymeric microchambers. With the goal of engineering stratified articular cartilage, inkjet bioprinting was used to deposit defined numbers of mesenchymal stromal cells (MSCs) and chondrocytes into pre-printed microchambers. These jetted cell suspensions rapidly underwent condensation within the hydrophobic microchambers, leading to the formation of organised arrays of cellular spheroids. The microchambers were also designed to provide boundary conditions to these spheroids, guiding their growth and eventual fusion, leading to the development of stratified cartilage tissue with a depth-dependant collagen fiber architecture that mimicked the structure of native articular cartilage. Furthermore, the composition and biomechanical properties of the bioprinted cartilage was also comparable to the native tissue. Using multi-tool biofabrication, we were also able to engineer anatomically accurate, human scale, osteochondral templates by printing this microchamber system on top of a hypertrophic cartilage region designed to support endochondral bone formation and then maintaining the entire construct in long-term bioreactor culture to enhance tissue development. This bioprinting strategy provides a versatile and scalable approach to engineer structurally organised cartilage tissues for joint resurfacing applications.
AUTHOR Derr, Kristy and Zou, Jinyun and Luo, Keren and Song, Min Jae and Sittampalam, G. Sitta and Zhou, Chao and Michael, Samuel and Ferrer, Marc and Derr, Paige
Title Fully 3D Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function [Abstract]
Year 2019
Journal/Proceedings Tissue Engineering Part C: Methods
Reftype
DOI/URL DOI
Abstract
Development of high throughput, reproducible, three-dimensional bioprinted skin equivalents that are morphologically and functionally comparable to native skin tissue is advancing research in skin diseases, and providing a physiologically relevant platform for the development of therapeutics, transplants for regenerative medicine, and testing of skin products like cosmetics. Current protocols for the production of engineered skin rafts are limited in their ability to control three dimensional geometry of the structure and contraction leading to variability of skin function between constructs. Here we describe a method for the biofabrication of skin equivalents that are fully bioprinted using an open market bioprinter, made with commercially available primary cells and natural hydrogels. The unique hydrogel formulation allows for the production of a human-like skin equivalent with minimal lateral tissue contraction in a multiwell plate format, thus making them suitable for high throughput bioprinting in a single print with fast print and relatively short incubation times. The morphology and barrier function of the fully three-dimensional bioprinted skin equivalents are validated by immunohistochemistry staining, optical coherence tomography, and permeation assays.
AUTHOR Gonzalez-Fernandez, T. and Rathan, S. and Hobbs, C. and Pitacco, P. and Freeman, F. E. and Cunniffe, G. M. and Dunne, N. J. and McCarthy, H. O. and Nicolosi, V. and O'Brien, F. J. and Kelly, D. J.
Title Pore-forming bioinks to enable Spatio-temporally defined gene delivery in bioprinted tissues [Abstract]
Year 2019
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
The regeneration of complex tissues and organs remains a major clinical challenge. With a view towards bioprinting such tissues, we developed a new class of pore-forming bioink to spatially and temporally control the presentation of therapeutic genes within bioprinted tissues. By blending sacrificial and stable hydrogels, we were able to produce bioinks whose porosity increased with time following printing. When combined with amphipathic peptide-based plasmid DNA delivery, these bioinks supported enhanced non-viral gene transfer to stem cells in vitro. By modulating the porosity of these bioinks, it was possible to direct either rapid and transient (pore-forming bioinks), or slower and more sustained (solid bioinks) transfection of host or transplanted cells in vivo. To demonstrate the utility of these bioinks for the bioprinting of spatially complex tissues, they were next used to zonally position stem cells and plasmids encoding for either osteogenic (BMP2) or chondrogenic (combination of TGF-β3, BMP2 and SOX9) genes within networks of 3D printed thermoplastic fibers to produce mechanically reinforced, gene activated constructs. In vivo, these bioprinted tissues supported the development of a vascularised, bony tissue overlaid by a layer of stable cartilage. When combined with multiple-tool biofabrication strategies, these gene activated bioinks can enable the bioprinting of a wide range of spatially complex tissues.
AUTHOR Laternser, Sandra and Keller, Hansjoerg and Leupin, Olivier and Rausch, Martin and Graf-Hausner, Ursula and Rimann, Markus
Title A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues [Abstract]
Year 2018
Journal/Proceedings SLAS TECHNOLOGY: Translating Life Sciences Innovation
Reftype
DOI/URL DOI
Abstract
Two-dimensional (2D) cell cultures do not reflect the in vivo situation, and thus it is important to develop predictive three-dimensional (3D) in vitro models with enhanced reliability and robustness for drug screening applications. Treatments against muscle-related diseases are becoming more prominent due to the growth of the aging population worldwide. In this study, we describe a novel drug screening platform with automated production of 3D musculoskeletal-tendon-like tissues. With 3D bioprinting, alternating layers of photo-polymerized gelatin-methacryloyl-based bioink and cell suspension tissue models were produced in a dumbbell shape onto novel postholder cell culture inserts in 24-well plates. Monocultures of human primary skeletal muscle cells and rat tenocytes were printed around and between the posts. The cells showed high viability in culture and good tissue differentiation, based on marker gene and protein expressions. Different printing patterns of bioink and cells were explored and calcium signaling with Fluo4-loaded cells while electrically stimulated was shown. Finally, controlled co-printing of tenocytes and myoblasts around and between the posts, respectively, was demonstrated followed by co-culture and co-differentiation. This screening platform combining 3D bioprinting with a novel microplate represents a promising tool to address musculoskeletal diseases.
AUTHOR Khaled, Shaban A. and Alexander, Morgan R. and Irvine, Derek J. and Wildman, Ricky D. and Wallace, Martin J. and Sharpe, Sonja and Yoo, Jae and Roberts, Clive J.
Title Extrusion 3D Printing of Paracetamol Tablets from a Single Formulation with Tunable Release Profiles Through Control of Tablet Geometry [Abstract]
Year 2018
Journal/Proceedings AAPS PharmSciTech
Reftype
DOI/URL DOI
Abstract
An extrusion-based 3D printer was used to fabricate paracetamol tablets with different geometries (mesh, ring and solid) from a single paste-based formulation formed from standard pharmaceutical ingredients. The tablets demonstrate that tunable drug release profiles can be achieved from this single formulation even with high drug loading (>{thinspace}80{%} w/w). The tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed well-defined release profiles (from immediate to sustained release) controlled by their different geometries. The dissolution results showed dependency of drug release on the surface area/volume (SA/V) ratio and the SA of the different tablets. The tablets with larger SA/V ratios and SA had faster drug release. The 3D printed tablets were also evaluated for physical and mechanical properties including tablet dimension, drug content, weight variation and breaking force and were within acceptable range as defined by the international standards stated in the US Pharmacopoeia. X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy were used to identify the physical form of the active and to assess possible drug-excipient interactions. These data again showed that the tablets meet USP requirement. These results clearly demonstrate the potential of 3D printing to create unique pharmaceutical manufacturing, and potentially clinical, opportunities. The ability to use a single unmodified formulation to achieve defined release profiles could allow, for example, relatively straightforward personalization of medicines for individuals with different metabolism rates for certain drugs and hence could offer significant development and clinical opportunities.
AUTHOR de Ruijter, Mylène and Ribeiro, Alexandre and Dokter, Inge and Castilho, Miguel and Malda, Jos
Title Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs [Abstract]
Year 2018
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Fabrication of biomimetic tissues holds much promise for the regeneration of cells or organs that are lost or damaged due to injury or disease. To enable the generation of complex, multicellular tissues on demand, the ability to design and incorporate different materials and cell types needs to be improved. Two techniques are combined: extrusion-based bioprinting, which enables printing of cell-encapsulated hydrogels; and melt electrowriting (MEW), which enables fabrication of aligned (sub)-micrometer fibers into a single-step biofabrication process. Composite structures generated by infusion of MEW fiber structures with hydrogels have resulted in mechanically and biologically competent constructs; however, their preparation involves a two-step fabrication procedure that limits freedom of design of microfiber architectures and the use of multiple materials and cell types. How convergence of MEW and extrusion-based bioprinting allows fabrication of mechanically stable constructs with the spatial distributions of different cell types without compromising cell viability and chondrogenic differentiation of mesenchymal stromal cells is demonstrated for the first time. Moreover, this converged printing approach improves freedom of design of the MEW fibers, enabling 3D fiber deposition. This is an important step toward biofabrication of voluminous and complex hierarchical structures that can better resemble the characteristics of functional biological tissues.
AUTHOR Cunniffe, Gráinne and Gonzalez-Fernandez, Tomas and Daly, Andrew and Nelson Sathy, Binulal and Jeon, Oju and Alsberg, Eben and J. Kelly, Daniel
Title Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering [Abstract]
Year 2017
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-g-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bonemarrow-derived mesenchymal stemcells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization andmineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.
AUTHOR Khaled, Shaban A. and Burley, Jonathan C. and Alexander, Morgan R. and Yang, Jing and Roberts, Clive J.
Title 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles [Abstract]
Year 2015
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
Abstract We have used three dimensional (3D) extrusion printing to manufacture a multi-active solid dosage form or so called polypill. This contains five compartmentalised drugs with two independently controlled and well-defined release profiles. This polypill demonstrates that complex medication regimes can be combined in a single personalised tablet. This could potentially improve adherence for those patients currently taking many separate tablets and also allow ready tailoring of a particular drug combination/drug release for the needs of an individual. The polypill here represents a cardiovascular treatment regime with the incorporation of an immediate release compartment with aspirin and hydrochlorothiazide and three sustained release compartments containing pravastatin, atenolol, and ramipril. X-ray powder diffraction (XRPD) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used to assess drug-excipient interaction. The printed polypills were evaluated for drug release using {USP} dissolution testing. We found that the polypill showed the intended immediate and sustained release profiles based upon the active/excipient ratio used.
AUTHOR Freeman, Fiona E. and Pitacco, Pierluca and van Dommelen, Lieke H. A. and Nulty, Jessica and Browe, David C. and Shin, Jung-Youn and Alsberg, Eben and Kelly, Daniel J.
Title 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration [Abstract]
Year 2020
Journal/Proceedings Science Advances
Reftype
DOI/URL URL DOI
Abstract
Therapeutic growth factor delivery typically requires supraphysiological dosages, which can cause undesirable off-target effects. The aim of this study was to 3D bioprint implants containing spatiotemporally defined patterns of growth factors optimized for coupled angiogenesis and osteogenesis. Using nanoparticle functionalized bioinks, it was possible to print implants with distinct growth factor patterns and release profiles spanning from days to weeks. The extent of angiogenesis in vivo depended on the spatial presentation of vascular endothelial growth factor (VEGF). Higher levels of vessel invasion were observed in implants containing a spatial gradient of VEGF compared to those homogenously loaded with the same total amount of protein. Printed implants containing a gradient of VEGF, coupled with spatially defined BMP-2 localization and release kinetics, accelerated large bone defect healing with little heterotopic bone formation. This demonstrates the potential of growth factor printing, a putative point of care therapy, for tightly controlled tissue regeneration.
AUTHOR Lee, Ji Seung and Park, Hae Sang and Jung, Harry and Lee, Hanna and Hong, Heesun and Lee, Young Jin and Suh, Ye Ji and Lee, Ok Joo and Kim, Soon Hee and Park, Chan Hum
Title 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells [Abstract]
Year 2020
Journal/Proceedings Additive Manufacturing
Reftype
DOI/URL URL DOI
Abstract
Cartilage regeneration is challenging because of the poor intrinsic self-repair capacity of avascular tissue. Three-dimensional (3D) bioprinting has gained significant attention in the field of tissue engineering and is a promising technology to overcome current difficulties in cartilage regeneration. Although bioink is an essential component of bioprinting technology, several challenges remain in satisfying different requirements for ideal bioink, including biocompatibility and printability based on specific biological requirements. Gelatin and hyaluronic acid (HA) have been shown to be ideal biomimetic hydrogel sources for cartilage regeneration. However, controlling their structure, mechanical properties, biocompatibility, and degradation rate for cartilage repair remains a challenge. Here, we show a photocurable bioink created by hybridization of gelatin methacryloyl (GelMA) and glycidyl-methacrylated HA (GMHA) for material extrusion 3D bioprinting in cartilage regeneration. GelMA and GMHA were mixed in various ratios, and the mixture of 7% GelMA and 5% GMHA bioink (G7H5) demonstrated the most reliable mechanical properties, rheological properties, and printability. This G7H5 bioink allowed us to build a highly complex larynx structure, including the hyoid bone, thyroid cartilage, cricoid cartilage, arytenoid cartilage, and cervical trachea. This bioink also provided an excellent microenvironment for chondrogenesis of tonsil-derived mesenchymal stem cells (TMSCs) in vitro and in vivo. In summary, this study presents the ideal formulation of GelMA/GMHA hybrid bioink to generate a well-suited photocurable bioink for cartilage regeneration of TMSCs using a material extrusion bioprinter, and could be applied to cartilage tissue engineering.
AUTHOR Colle, Julien and Blondeel, Phillip and De Bruyne, Axelle and Bochar, Silke and Tytgat, Liesbeth and Vercruysse, Chris and Van Vlierberghe, Sandra and Dubruel, Peter and Declercq, Heidi
Title Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering [Abstract]
Year 2020
Journal/Proceedings Journal of Materials Science: Materials in Medicine
Reftype Colle2020
DOI/URL DOI
Abstract
The increasing number of mastectomies results in a greater demand for breast reconstruction characterized by simplicity and a low complication profile. Reconstructive surgeons are investigating tissue engineering (TE) strategies to overcome the current surgical drawbacks. 3D bioprinting is the rising technique for the fabrication of large tissue constructs which provides a potential solution for unmet clinical needs in breast reconstruction building on decades of experience in autologous fat grafting, adipose-derived mesenchymal stem cell (ASC) biology and TE. A scaffold was bioprinted using encapsulated ASC spheroids in methacrylated gelatin ink (GelMA). Uniform ASC spheroids with an ideal geometry and diameter for bioprinting were formed, using a high-throughput non-adhesive agarose microwell system. ASC spheroids in adipogenic differentiation medium (ADM) were evaluated through live/dead staining, histology (HE, Oil Red O), TEM and RT-qPCR. Viable spheroids were obtained for up to 14 days post-printing and showed multilocular microvacuoles and successful differentiation toward mature adipocytes shown by gene expression analysis. Moreover, spheroids were able to assemble at random in GelMA, creating a macrotissue. Combining the advantage of microtissues to self-assemble and the controlled organization by bioprinting technologies, these ASC spheroids can be useful as building blocks for the engineering of soft tissue implants.
AUTHOR Zhang, Danwei and Jonhson, Win and Herng, Tun Seng and Ang, Yong Quan and Yang, Lin and Tan, Swee Ching and Peng, Erwin and He, Hui and Ding, Jun
Title A 3D-printing method of fabrication for metals{,} ceramics{,} and multi-materials using a universal self-curable technique for robocasting [Abstract]
Year 2019
Journal/Proceedings Materials Horizons
Reftype
DOI/URL DOI
Abstract
Ceramics and metals are important materials that modern technologies are constructed from. The capability to produce such materials in a complex geometry with good mechanical properties can revolutionize the way we engineer our devices. Current curing techniques pose challenges such as high energy requirements{,} limitations of materials with high refractive index{,} tedious post-processing heat treatment processes{,} uneven drying shrinkages{,} and brittleness of green bodies. In this paper{,} a novel modified self-curable epoxide–amine 3D printing system is proposed to print a wide range of ceramics (metal oxides{,} nitrides{,} and carbides) and metals without the need for an external curing source. Through this technique{,} complex multi-material structures (with metal–ceramic and ceramic–ceramic combinations) can also be realized. Tailoring and matching the sintering temperatures of different materials through sintering additives and dopants{,} combined with a structural design providing maximum adhesion between interfaces{,} allow us to successfully obtain superior quality sintered multi-material structures. High-quality ceramic and metallic materials have been achieved (e.g.{,} zirconia with >98% theoretical density). Also{,} highly conductive metals and magnetic ceramics were printed and shaped uniquely without the need for a sacrificial support. With the addition of low molecular weight plasticizers and a multi-stage heat treatment process{,} crack-free and dense high-quality integrated multi-material structures fabricated by 3D printing can thus be a reality in the near future.
AUTHOR Khaled, Shaban A. and Alexander, Morgan R. and Wildman, Ricky D. and Wallace, Martin J. and Sharpe, Sonja and Yoo, Jae and Roberts, Clive J.
Title 3D extrusion printing of high drug loading immediate release paracetamol tablets [Abstract]
Year 2018
Journal/Proceedings International Journal of Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
The manufacture of immediate release high drug loading paracetamol oral tablets was achieved using an extrusion based 3D printer from a premixed water based paste formulation. The 3D printed tablets demonstrate that a very high drug (paracetamol) loading formulation (80% w/w) can be printed as an acceptable tablet using a method suitable for personalisation and distributed manufacture. Paracetamol is an example of a drug whose physical form can present challenges to traditional powder compression tableting. Printing avoids these issues and facilitates the relatively high drug loading. The 3D printed tablets were evaluated for physical and mechanical properties including weight variation, friability, breaking force, disintegration time, and dimensions and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). X-ray Powder Diffraction (XRPD) was used to identify the physical form of the active. Additionally, XRPD, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to assess possible drug-excipient interactions. The 3D printed tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed a profile characteristic of the immediate release profile as intended based upon the active/excipient ratio used with disintegration in less than 60 s and release of most of the drug within 5 min. The results demonstrate the capability of 3D extrusion based printing to produce acceptable high-drug loading tablets from approved materials that comply with current USP standards.
AUTHOR Daly, Andrew C. and Pitacco, Pierluca and Nulty, Jessica and Cunniffe, Gráinne M. and Kelly, Daniel J.
Title 3D printed microchannel networks to direct vascularisation during endochondral bone repair [Abstract]
Year 2018
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.
AUTHOR Khaled, Shaban A. and Burley, Jonathan C. and Alexander, Morgan R. and Yang, Jing and Roberts, Clive J.
Title 3D printing of tablets containing multiple drugs with defined release profiles [Abstract]
Year 2015
Journal/Proceedings International Journal of Pharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Abstract We have employed three-dimensional (3D) extrusion-based printing as a medicine manufacturing technique for the production of multi-active tablets with well-defined and separate controlled release profiles for three different drugs. This ‘polypill’ made by a 3D additive manufacture technique demonstrates that complex medication regimes can be combined in a single tablet and that it is viable to formulate and ‘dial up’ this single tablet for the particular needs of an individual. The tablets used to illustrate this concept incorporate an osmotic pump with the drug captopril and sustained release compartments with the drugs nifedipine and glipizide. This combination of medicines could potentially be used to treat diabetics suffering from hypertension. The room temperature extrusion process used to print the formulations used excipients commonly employed in the pharmaceutical industry. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray powder diffraction (XRPD) were used to assess drug–excipient interaction. The printed formulations were evaluated for drug release using {USP} dissolution testing. We found that the captopril portion showed the intended zero order drug release of an osmotic pump and noted that the nifedipine and glipizide portions showed either first order release or Korsmeyer–Peppas release kinetics dependent upon the active/excipient ratio used.
AUTHOR Kessel, Benjamin and Lee, Mihyun and Bonato, Angela and Tinguely, Yann and Tosoratti, Enrico and Zenobi-Wong, Marcy
Title 3D Bioprinting of Macroporous Materials Based on Entangled Hydrogel Microstrands [Abstract]
Year 2020
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Hydrogels are excellent mimetics of mammalian extracellular matrices and have found widespread use in tissue engineering. Nanoporosity of monolithic bulk hydrogels, however, limits mass transport of key biomolecules. Microgels used in 3D bioprinting achieve both custom shape and vastly improved permissivity to an array of cell functions, however spherical-microbead-based bioinks are challenging to upscale, are inherently isotropic, and require secondary crosslinking. Here, bioinks based on high-aspect-ratio hydrogel microstrands are introduced to overcome these limitations. Pre-crosslinked, bulk hydrogels are deconstructed into microstrands by sizing through a grid with apertures of 40–100 µm. The microstrands are moldable and form a porous, entangled structure, stable in aqueous medium without further crosslinking. Entangled microstrands have rheological properties characteristic of excellent bioinks for extrusion bioprinting. Furthermore, individual microstrands align during extrusion and facilitate the alignment of myotubes. Cells can be placed either inside or outside the hydrogel phase with >90% viability. Chondrocytes co-printed with the microstrands deposit abundant extracellular matrix, resulting in a modulus increase from 2.7 to 780.2 kPa after 6 weeks of culture. This powerful approach to deconstruct bulk hydrogels into advanced bioinks is both scalable and versatile, representing an important toolbox for 3D bioprinting of architected hydrogels.
AUTHOR Zhang, Danwei and Peng, Erwin and Borayek, Ramadan and Ding, Jun
Title Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine Features [Abstract]
Year 2019
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Fabrication of dense ceramic articles with intricate fine features and geometrically complex morphology by using a relatively simple and the cost-effective process still remains a challenge. Ceramics, either in its green- or sintered-form, are known for being hard yet brittle which limits further shape reconfiguration. In this work, a combinatorial process of ceramic robocasting and photopolymerization is demonstrated to produce either flexible and/or stretchable ceramic green-body (Flex-Body or Stretch-Body) that can undergo a postprinting reconfiguration process. Secondary shaping may proceed through: i) self-assembly-assisted shaping and ii) mold-assisted shaping process, which allows a well-controlled ceramic structure morphology. With a proposed well-controlled thermal heating process, the ceramic Sintered-Body can achieve >99.0% theoretical density with good mechanical rigidity. Complex and dense ceramic articles with fine features down to 65 μm can be fabricated. When combined with a multi-nozzle deposition process, i) self-shaping ceramic structures can be realized through anisotropic shrinkage induced by suspensions' composition variation and ii) technical and functional multiceramic structures can be fabricated. The simplicity of the proposed technique and its inexpensive processing cost make it an attractive approach for fabricating geometrically complex ceramic articles with unique macrostructures, which complements the existing state of-the-art ceramic additive manufacturing techniques.
AUTHOR Schaffner, Manuel and Faber, Jakob A. and Pianegonda, Lucas and Rühs, Patrick A. and Coulter, Fergal and Studart, André R.
Title 3D printing of robotic soft actuators with programmable bioinspired architectures [Abstract]
Year 2018
Journal/Proceedings Nature Communications
Reftype Schaffner2018
DOI/URL DOI
Abstract
Soft actuation allows robots to interact safely with humans, other machines, and their surroundings. Full exploitation of the potential of soft actuators has, however, been hindered by the lack of simple manufacturing routes to generate multimaterial parts with intricate shapes and architectures. Here, we report a 3D printing platform for the seamless digital fabrication of pneumatic silicone actuators exhibiting programmable bioinspired architectures and motions. The actuators comprise an elastomeric body whose surface is decorated with reinforcing stripes at a well-defined lead angle. Similar to the fibrous architectures found in muscular hydrostats, the lead angle can be altered to achieve elongation, contraction, or twisting motions. Using a quantitative model based on lamination theory, we establish design principles for the digital fabrication of silicone-based soft actuators whose functional response is programmed within the material's properties and architecture. Exploring such programmability enables 3D printing of a broad range of soft morphing structures.
AUTHOR Schaffner, Manuel and R{"u}hs, Patrick A. and Coulter, Fergal and Kilcher, Samuel and Studart, Andr{'e} R.
Title 3D printing of bacteria into functional complex materials [Abstract]
Year 2017
Journal/Proceedings Science Advances
Reftype
DOI/URL URL DOI
Abstract
Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of {textquotedblleft}living materials{textquotedblright} capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.
AUTHOR Govindharaj, Mano and Al Hashemi, Noura Sayed and Soman, Soja Saghar and Vijayavenkataraman, Sanjairaj
Title Bioprinting of bioactive tissue scaffolds from ecologically-destructive fouling tunicates [Abstract]
Year 2022
Journal/Proceedings Journal of Cleaner Production
Reftype
DOI/URL URL DOI
Abstract
Urochordates are the closest invertebrate relative to humans and commonly referred to as tunicates, a name ascribed to their leathery outer “tunic”. The tunic is the outer covering of the organism which functions as the exoskeleton and is rich in carbohydrates and proteins. Invasive or fouling tunicates pose a great threat to the indigenous marine ecosystem and governments spend several hundred thousand dollars for tunicate management, considering the huge adverse economic impact it has on the shipping and fishing industries. In this work, the environmentally destructive colonizing tunicate species of Polyclinum constellatum was successfully identified in the coast of Abu Dhabi and methods of sustainably using it as wound-dressing materials, decellularized extra-cellular matrix (dECM) scaffolds for tissue engineering applications and bioinks for bioprinting of tissue constructs for regenerative medicine are proposed. The intricate three-dimensional nanofibrous cellulosic networks in the tunic remain intact even after the multi-step process of decellularization and lyophilization. The lyophilized dECM tunics possess excellent biocompatibility and remarkable tensile modulus of 3.85 ± 0.93 MPa compared to ∼0.1–1 MPa of other hydrogel systems. This work demonstrates the use of lyophilized tunics as wound-dressing materials, having outperformed the commercial dressing materials with a capacity of absorbing 20 times its weight in the dry state. This work also demonstrates the biocompatibility of dECM scaffold and dECM-derived bioink (3D bioprinting with Mouse Embryonic Fibroblasts (MEFs)). Both dECM scaffolds and bioprinted dECM-based tissue constructs show enhanced metabolic activity and cell proliferation over time. Sustainable utilization of dECM-based biomaterials from ecologically-destructive fouling tunicates proposed in this work helps preserve the marine ecosystem, shipping and fishing industries worldwide, and mitigate the huge cost spent for tunicate management.
AUTHOR Cao, Chuanliang and Huang, Pengren and Prasopthum, Aruna and Parsons, Andrew J. and Ai, Fanrong and Yang, Jing
Title Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations [Abstract]
Year 2022
Journal/Proceedings Biomater. Sci.
Reftype
DOI/URL DOI
Abstract
3D printed bioactive glass or bioceramic particle reinforced composite scaffolds for bone tissue engineering currently suffer from low particle concentration (100% breaking strain) by adding poly(ethylene glycol) which is biocompatible and FDA approved. The scaffolds require no post-printing washing to remove hazardous components. More exposure of HA microparticles on strut surfaces is enabled by incorporating higher HA concentrations. Compared to scaffolds with 72 wt% HA{,} scaffolds with higher HA content (90 wt%) enhance matrix formation but not new bone volume after 12 weeks implantation in rat calvarial defects. Histological analyses demonstrate that bone regeneration within the 3D printed scaffolds is via intramembranous ossification and starts in the central region of pores. Fibrous tissue that resembles non-union tissue within bone fractures is formed within pores that do not have new bone. The amount of blood vessels is similar between scaffolds with mainly fibrous tissue and those with more bone tissue{,} suggesting vascularization is not a deciding factor for determining the type of tissues regenerated within the pores of 3D printed scaffolds. Multinucleated immune cells are commonly present in all scaffolds surrounding the struts{,} suggesting a role of managing inflammation in bone regeneration within 3D printed scaffolds.
AUTHOR Yan Li and Lijing Huang and Guangpin Tai and Feifei Yan and Lin Cai and Chenxing Xin and Shamoon {Al Islam}
Title Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment [Abstract]
Year 2022
Journal/Proceedings Composites Part A: Applied Science and Manufacturing
Reftype
DOI/URL URL DOI
Abstract
The treatment of tumour-related bone defects should ideally combine bone regeneration with tumour treatment. Additive manufacturing (AM) could feasibly place functional bone-repair materials within composite materials with functional-grade structures, giving them bone repair and anti-tumour effects. Magnetothermal therapy is a promising non-invasive method of tumour treatment that has attracted increasing attention. In this study, we prepared novel hydrogel composite scaffolds of polyvinyl alcohol/sodium alginate/hydroxyapatite (PVA/SA/HA) at low temperature via AM. The scaffolds were loaded with various concentrations of magnetic graphene oxide (MGO) @Fe3O4 nanoparticles. The scaffolds were characterised by fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA), which showed that the scaffolds have good moulding qualities and strong hydrogen bonding between the MGO/PVA/SA/HA components. TGA analysis demonstrated the expected thermal stability of the MGO and scaffolds. Thermal effects can be adjusted by varying the contents of MGO and the strength of an external alternating magnetic field. The prepared MGO hydrogel composite scaffolds enhance biological functions and support bone mesenchymal stem cell differentiation in vitro. The scaffolds also show favourable anti-tumour characteristics with effective magnetothermal conversion in vivo.
AUTHOR Zhang, Xiao and Liu, Yang and Zuo, Qiang and Wang, Qingyun and Li, Zuxi and Yan, Kai and Yuan, Tao and Zhang, Yi and Shen, Kai and Xie, Rui and Fan, Weimin
Title 3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair [Abstract]
Year 2021
Journal/Proceedings International Journal of Bioprinting; Vol 7, No 4 (2021)
Reftype
DOI/URL URL DOI
Abstract
Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.
AUTHOR Nulty, Jessica and Freeman, Fiona E. and Browe, David C. and Burdis, Ross and Ahern, Daniel P. and Pitacco, Pierluca and Lee, Yu Bin and Alsberg, Eben and Kelly, Daniel J.
Title 3D Bioprinting of prevascularised implants for the repair of critically-sized bone defects [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
For 3D bioprinted tissues to be scaled-up to clinically relevant sizes, effective prevascularisation strategies are required to provide the necessary nutrients for normal metabolism and to remove associated waste by-products. The aim of this study was to develop a bioprinting strategy to engineer prevascularised tissues in vitro and to investigate the capacity of such constructs to enhance the vascularisation and regeneration of large bone defects in vivo. From a screen of different bioinks, a fibrin-based hydrogel was found to best support human umbilical vein endothelial cell (HUVEC) sprouting and the establishment of a microvessel network. When this bioink was combined with HUVECs and supporting human bone marrow stem/stromal cells (hBMSCs), these microvessel networks persisted in vitro. Furthermore, only bioprinted tissues containing both HUVECs and hBMSCs, that were first allowed to mature in vitro, supported robust blood vessel development in vivo. To assess the therapeutic utility of this bioprinting strategy, these bioinks were used to prevascularise 3D printed polycaprolactone (PCL) scaffolds, which were subsequently implanted into critically-sized femoral bone defects in rats. Microcomputed tomography (µCT) angiography revealed increased levels of vascularisation in vivo, which correlated with higher levels of new bone formation. Such prevascularised constructs could be used to enhance the vascularisation of a range of large tissue defects, forming the basis of multiple new bioprinted therapeutics. Statement of Significance This paper demonstrates a versatile 3D bioprinting technique to improve the vascularisation of tissue engineered constructs and further demonstrates how this method can be incorporated into a bone tissue engineering strategy to improve vascularisation in a rat femoral defect model.
AUTHOR Rößler, Sina and Brückner, Andreas and Kruppke, Iris and Wiesmann, Hans-Peter and Hanke, Thomas and Kruppke, Benjamin
Title 3D Plotting of Silica/Collagen Xerogel Granules in an Alginate Matrix for Tissue-Engineered Bone Implants [Abstract]
Year 2021
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Today, materials designed for bone regeneration are requested to be degradable and resorbable, bioactive, porous, and osteoconductive, as well as to be an active player in the bone-remodeling process. Multiphasic silica/collagen Xerogels were shown, earlier, to meet these requirements. The aim of the present study was to use these excellent material properties of silica/collagen Xerogels and to process them by additive manufacturing, in this case 3D plotting, to generate implants matching patient specific shapes of fractures or lesions. The concept is to have Xerogel granules as active major components embedded, to a large proportion, in a matrix that binds the granules in the scaffold. By using viscoelastic alginate as matrix, pastes of Xerogel granules were processed via 3D plotting. Moreover, alginate concentration was shown to be the key to a high content of irregularly shaped Xerogel granules embedded in a minimum of matrix phase. Both the alginate matrix and Xerogel granules were also shown to influence viscoelastic behavior of the paste, as well as the dimensionally stability of the scaffolds. In conclusion, 3D plotting of Xerogel granules was successfully established by using viscoelastic properties of alginate as matrix phase.
AUTHOR Leu Alexa, Rebeca and Ianchis, Raluca and Savu, Diana and Temelie, Mihaela and Trica, Bogdan and Serafim, Andrada and Vlasceanu, George Mihail and Alexandrescu, Elvira and Preda, Silviu and Iovu, Horia
Title 3D Printing of Alginate-Natural Clay Hydrogel-Based Nanocomposites [Abstract]
Year 2021
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Biocompatibility, biodegradability, shear tinning behavior, quick gelation and an easy crosslinking process makes alginate one of the most studied polysaccharides in the field of regenerative medicine. The main purpose of this study was to obtain tissue-like materials suitable for use in bone regeneration. In this respect, alginate and several types of clay were investigated as components of 3D-printing, nanocomposite inks. Using the extrusion-based nozzle, the nanocomposites inks were printed to obtain 3D multilayered scaffolds. To observe the behavior induced by each type of clay on alginate-based inks, rheology studies were performed on composite inks. The structure of the nanocomposites samples was examined using Fourier Transform Infrared Spectrometry and X-ray Diffraction (XRD), while the morphology of the 3D-printed scaffolds was evaluated using Electron Microscopy (SEM, TEM) and Micro-Computed Tomography (Micro-CT). The swelling and dissolvability of each composite scaffold in phosfate buffer solution were followed as function of time. Biological studies indicated that the cells grew in the presence of the alginate sample containing unmodified clay, and were able to proliferate and generate calcium deposits in MG-63 cells in the absence of specific signaling molecules. This study provides novel information on potential manufacturing methods for obtaining nanocomposite hydrogels suitable for 3D printing processes, as well as valuable information on the clay type selection for enabling accurate 3D-printed constructs. Moreover, this study constitutes the first comprehensive report related to the screening of several natural clays for the additive manufacturing of 3D constructs designed for bone reconstruction therapy.
AUTHOR Shin, Crystal S. and Cabrera, Fernando J. and Lee, Richard and Kim, John and Ammassam Veettil, Remya and Zaheer, Mahira and Adumbumkulath, Aparna and Mhatre, Kirti and Ajayan, Pulickel M. and Curley, Steven A. and Scott, Bradford G. and Acharya, Ghanashyam
Title 3D-Bioprinted Inflammation Modulating Polymer Scaffolds for Soft Tissue Repair [Abstract]
Year 2021
Journal/Proceedings Advanced Materials
Reftype
DOI/URL DOI
Abstract
Abstract Development of inflammation modulating polymer scaffolds for soft tissue repair with minimal postsurgical complications is a compelling clinical need. However, the current standard of care soft tissue repair meshes for hernia repair is highly inflammatory and initiates a dysregulated inflammatory process causing visceral adhesions and postsurgical complications. Herein, the development of an inflammation modulating biomaterial scaffold (bioscaffold) for soft tissue repair is presented. The bioscaffold design is based on the idea that, if the excess proinflammatory cytokines are sequestered from the site of injury by the surgical implantation of a bioscaffold, the inflammatory response can be modulated, and the visceral adhesion formations and postsurgical complications can be minimized. The bioscaffold is fabricated by 3D-bioprinting of an in situ phosphate crosslinked poly(vinyl alcohol) polymer. In vivo efficacy of the bioscaffold is evaluated in a rat ventral hernia model. In vivo proinflammatory cytokine expression analysis and histopathological analysis of the tissues have confirmed that the bioscaffold acts as an inflammation trap and captures the proinflammatory cytokines secreted at the implant site and effectively modulates the local inflammation without the need for exogenous anti-inflammatory agents. The bioscaffold is very effective in inhibiting visceral adhesions formation and minimizing postsurgical complications.
AUTHOR Leu Alexa, Rebeca and Iovu, Horia and Ghitman, Jana and Serafim, Andrada and Stavarache, Cristina and Marin, Maria-Minodora and Ianchis, Raluca
Title 3D-Printed Gelatin Methacryloyl-Based Scaffolds with Potential Application in Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The development of materials for 3D printing adapted for tissue engineering represents one of the main concerns nowadays. Our aim was to obtain suitable 3D-printed scaffolds based on methacrylated gelatin (GelMA). In this respect, three degrees of GelMA methacrylation, three different concentrations of GelMA (10%, 20%, and 30%), and also two concentrations of photoinitiator (I-2959) (0.5% and 1%) were explored to develop proper GelMA hydrogel ink formulations to be used in the 3D printing process. Afterward, all these GelMA hydrogel-based inks/3D-printed scaffolds were characterized structurally, mechanically, and morphologically. The presence of methacryloyl groups bounded to the surface of GelMA was confirmed by FTIR and 1H-NMR analyses. The methacrylation degree influenced the value of the isoelectric point that decreased with the GelMA methacrylation degree. A greater concentration of photoinitiator influenced the hydrophilicity of the polymer as proved using contact angle and swelling studies because of the new bonds resulting after the photocrosslinking stage. According to the mechanical tests, better mechanical properties were obtained in the presence of the 1% initiator. Circular dichroism analyses demonstrated that the secondary structure of gelatin remained unaffected during the methacrylation process, thus being suitable for biological applications.
AUTHOR Junghyun Lee and Chong {Yang Chuah} and Wen {See Tan} and Juha Song and Tae-Hyun Bae
Title 3D-printed monolithic porous adsorbents from a solution-processible, hypercrosslinkable, functionalizable polymer [Abstract]
Year 2021
Journal/Proceedings Chemical Engineering Journal
Reftype
DOI/URL URL DOI
Abstract
Solid adsorbents have been actively developed for energy-efficient gas separations including carbon capture and air purification. However, conventional particulate adsorbents often show ineffective mass transfer and significant pressure drop in practical operations, leading to a limited overall performance. As a potential solution to these issues, the development of three-dimensionally (3D) structured adsorbents has been proposed. Herein, we report a novel approach to design 3D monolithic adsorbents for CO2 separation via 3D printing of a processible polymer, which in turn can be transformed into a functional porous material via hypercrosslinking and amine-grafting. Importantly, such structure can be realized without an aid from binders or mechanical supports. Our adsorbents demonstrated a promising CO2 adsorption performance without experiencing any pressure drop under dynamic flow condition. The stability and regenerability, which are also important requirements for practical operations, were also successfully demonstrated through a repetitive adsorption-desorption cycling test in the presence of water vapor. We envisage that our approach can be applied in the development of structurally versatile adsorbents for various gas separation processes.
AUTHOR Golafshan, Nasim and Willemsen, Koen and Kadumudi, Firoz Babu and Vorndran, Elke and Dolatshahi-Pirouz, Alireza and Weinans, Harrie and van der Wal, Bart C. H. and Malda, Jos and Castilho, Miguel
Title 3D-Printed Regenerative Magnesium Phosphate Implant Ensures Stability and Restoration of Hip Dysplasia [Abstract]
Year 2021
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Osteoarthritis of the hip is a painful and debilitating condition commonly occurring in humans and dogs. One of the main causes that leads to hip osteoarthritis is hip dysplasia. Although the current surgical methods to correct dysplasia work satisfactorily in many circumstances, these are associated with serious complications, tissue resorption, and degeneration. In this study, a one-step fabrication of a regenerative hip implant with a patient-specific design and load-bearing properties is reported. The regenerative hip implant is fabricated based on patient imaging files and by an extrusion assisted 3D printing process using a flexible, bone-inducing biomaterial. The novel implant can be fixed with metallic screws to host bone and can be loaded up to physiological loads without signs of critical permanent deformation or failure. Moreover, after exposing the hip implant to accelerated in vitro degradation, it is confirmed that it is still able to support physiological loads even after losing ≈40% of its initial mass. In addition, the osteopromotive properties of the novel hip implant is demonstrated as shown by an increased expression of osteonectin and osteocalcin by cultured human mesenchymal stem cells after 21 days. Overall, the proposed hip implant provides an innovative regenerative and mechanically stable solution for hip dysplasia treatment.
AUTHOR Jiahui Lai and Xinliang Ye and Jia Liu and Chong Wang and Junzhi Li and Xiang Wang and Mingze Ma and Min Wang
Title 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose [Abstract]
Year 2021
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
4D printing of swellable/shrinkable hydrogels has been viewed as an appealing approach for fabricating dynamic structures for various biomedical applications. However, 4D printing of precise hydrogel structures is still highly challenging due to the relatively poor printability of hydrogels and high surface roughness of printed patterns, when micro extrusion-based 3D printers are used. In this study, a highly printable and shape morphing hydrogel was investigated for 4D printing by blending alginate (Alg) and methylcellulose (MC). The optimized Alg/MC hydrogel exhibited excellent rheological properties, extrudability and shape fidelity of printed structures. The printable Alg/MC hydrogel was 4D printed into a series of patterned 2D architectures which were encoded with anisotropic stiffness and swelling behaviors by strategically controlling the network density gradients vertical to the orientation of the patterned strips. By controlling the strip interspacing and angle, these 2D architectures could transform into various prescribed simple 3D morphologies (e.g., tube-curling and helix) and complex 3D morphologies (e.g., double helix and flowers) after immersion in a calcium chloride solution. This shape morphing Alg/MC hydrogel with excellent printability has high potential for 4D printing of delicate hydrogel patterns, which are increasingly needed in the tissue engineering, biomedical device and soft robotics fields.
AUTHOR Kwak, Chaesu and Young Ryu, Seoung and Park, Hyunsu and Lim, Sehyeong and Yang, Jeewon and Kim, Jieun and Hyung Kim, Jin and Lee, Joohyung
Title A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions [Abstract]
Year 2021
Journal/Proceedings Journal of Colloid and Interface Science
Reftype
DOI/URL URL DOI
Abstract
Three-dimensional (3D) printing technology is actively utilized in various industrial fields because it facilitates effective and customizable fabrication of complex structures. An important processing route for 3D printing is the extrusion of inks in the form of colloidal suspensions or emulsions, which has recently attracted considerable attention because it allows for selection of a wide range of printing materials and is operable under ambient processing conditions. Herein, we investigate the 3D printability of complex fluids containing chlorella microalgae as an eco-friendly material for 3D printing. Two possible ink types are considered: aqueous chlorella suspensions and emulsions of oil and water mixtures. While the aqueous chlorella suspensions at high particle loading display the 3D-printable rheological properties such as high yield stress and good shape retention, the final structures after extruding and drying the suspensions under ambient conditions show a significant number of macroscopic defects, limiting their practical application. In contrast, the 3D structures produced from the oil-in-water Pickering emulsions stabilized by chlorella microalgae, which are amphiphilic and active at the oil–water interface, show significantly reduced defect formation. Addition of a fast-evaporable oil phase, hexane, is crucial in the mechanisms of enhanced cementation between the individual microalgae via increased inter-particle packing, capillary attraction, and hydrophobic interaction. Furthermore, addition of solid paraffin wax, which is crystalline but well-soluble in the hydrocarbon oil phase under ambient conditions, completely eliminates the undesirable defect formation via enhanced inter-particle binding, while maintaining the overall rheological properties of the emulsion. The optimal formulation of the Pickering emulsion is finally employed to produce a 3D scaffold of satisfactory structural integrity, suggesting that the chlorella-based ink, in the form of an emulsion, has potential as an eco-friendly 3D printing ink processable under ambient conditions.
AUTHOR Bin Wang and Pedro J. Díaz-Payno and David C. Browe and Fiona E. Freeman and Jessica Nulty and Ross Burdis and Daniel J. Kelly
Title Affinity-bound growth factor within sulfated interpenetrate network bioinks for bioprinting cartilaginous tissues [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
3D bioprinting has emerged as a promising technology in the field of tissue engineering and regenerative medicine due to its ability to create anatomically complex tissue substitutes. However, it still remains challenging to develop bioactive bioinks that provide appropriate and permissive environments to instruct and guide the regenerative process in vitro and in vivo. In this study alginate sulfate, a sulfated glycosaminoglycan (sGAG) mimic, was used to functionalize an alginate-gelatin methacryloyl (GelMA) interpenetrating network (IPN) bioink to enable the bioprinting of cartilaginous tissues. The inclusion of alginate sulfate had a limited influence on the viscosity, shear-thinning and thixotropic properties of the IPN bioink, enabling high-fidelity bioprinting and supporting mesenchymal stem cell (MSC) viability post-printing. The stiffness of printed IPN constructs greatly exceeded that achieved by printing alginate or GelMA alone, while maintaining resilience and toughness. Furthermore, given the high affinity of alginate sulfate to heparin-binding growth factors, the sulfated IPN bioink supported the sustained release of transforming growth factor-β3 (TGF-β3), providing an environment that supported robust chondrogenesis in vitro, with little evidence of hypertrophy or mineralization over extended culture periods. Such bioprinted constructs also supported chondrogenesis in vivo, with the controlled release of TGF-β3 promoting significantly higher levels of cartilage-specific extracellular matrix deposition. Altogether, these results demonstrate the potential of bioprinting sulfated bioinks as part of a ‘single-stage’ or ‘point-of-care’ strategy for regenerating cartilaginous tissues. Statement of Significance: This study highlights the potential of using sulfated interpenetrating network (IPN) bioink to support the regeneration of phenotypically stable articular cartilage. Construction of interpenetrate networks in the bioink enables unique high-fidelity bioprinting and unique synergistic mechanical properties. The presence of alginate sulfate provided the capacity of high affinity-binding of TGF-β3, which promoted robust chondrogenesis.
AUTHOR Zuoxin Zhou and Mario Samperi and Lea Santu and Glenieliz Dizon and Shereen Aboarkaba and David Limón and David Limón and Christopher Tuck and Lluïsa Pérez-García and Derek J. Irvine and David B. Amabilino and Ricky Wildman
Title An Imidazolium-Based Supramolecular Gelator Enhancing Interlayer Adhesion in 3D Printed Dual Network Hydrogels [Abstract]
Year 2021
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
The variety of UV-curable monomers for 3D printing is limited by a requirement for rapid curing after each sweep depositing a layer. This study proposes to trigger supramolecular self-assembly during the process by a gemini imidazolium-based low-molecular-weight gelator, allowing printing of certain monomers. The as-printed hydrogel structures were supported by a gelator network immobilising monomer:water solutions. A thixotropic hydrogel was formed with a recovery time of < 50 seconds, storage modulus = 8.1 kPa and yield stress = 18 Pa, processable using material-extrusion 3D printing. Material-extrusion 3D printed objects are usually highly anisotropic, but in this case the gelator network improved the isotropy by subverting the usual layer-by-layer curing strategy. The monomer in all printed layers was cured simultaneously during post-processing to form a continuous polymeric network. The two networks then physically interpenetrate to enhance mechanical performance. The double-network hydrogels fabricated with layers cured simultaneously showed 62-147 % increases in tensile properties compared to layer-by-layer cured hydrogels. The results demonstrated excellent inter- and intra-layered coalescence. Consequently, the tensile properties of 3D printed hydrogels were close to mould cast objects. This study has demonstrated the benefits of using gelators to expand the variety of 3D printable monomers and shown improved isotropy to offer excellent mechanical performances.
AUTHOR Yuanhao Wu and Gabriele Maria Fortunato and Babatunde O Okesola and Francesco Luigi Pellerej di Brocchetti and Ratima Suntornnond and John Connelly and Carmelo De Maria and Jose Carlos Rodriguez-Cabello and Giovanni Vozzi and Wen Wang and Alvaro Mata
Title An interfacial self-assembling bioink for the manufacturing of capillary-like structures with tuneable and anisotropic permeability [Abstract]
Year 2021
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Self-assembling bioinks offer the possibility to biofabricate with molecular precision, hierarchical control, and biofunctionality. For this to become a reality with widespread impact, it is essential to engineer these ink systems ensuring reproducibility and providing suitable standardization. We have reported a self-assembling bioink based on disorder-to-order transitions of an elastin-like recombinamer (ELR) to co-assemble with graphene oxide (GO). Here, we establish reproducible processes, optimize printing parameters for its use as a bioink, describe new advantages that the self-assembling bioink can provide, and demonstrate how to fabricate novel structures with physiological relevance. We fabricate capillary-like structures with resolutions down to ∼10 µm in diameter and ∼2 µm thick tube walls and use both experimental and finite element analysis to characterize the printing conditions, underlying interfacial diffusion-reaction mechanism of assembly, printing fidelity, and material porosity and permeability. We demonstrate the capacity to modulate the pore size and tune the permeability of the resulting structures with and without human umbilical vascular endothelial cells. Finally, the potential of the ELR-GO bioink to enable supramolecular fabrication of biomimetic structures was demonstrated by printing tubes exhibiting walls with progressively different structure and permeability.
AUTHOR Leu Alexa, Rebeca and Iovu, Horia and Trica, Bogdan and Zaharia, Catalin and Serafim, Andrada and Alexandrescu, Elvira and Radu, Ionut-Cristian and Vlasceanu, George and Preda, Silviu and Ninciuleanu, Claudia Mihaela and Ianchis, Raluca
Title Assessment of Naturally Sourced Mineral Clays for the 3D Printing of Biopolymer-Based Nanocomposite Inks [Abstract]
Year 2021
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
The present study investigated the possibility of obtaining 3D printed composite constructs using biomaterial-based nanocomposite inks. The biopolymeric matrix consisted of methacrylated gelatin (GelMA). Several types of nanoclay were added as the inorganic component. Our aim was to investigate the influence of clay type on the rheological behavior of ink formulations and to determine the morphological and structural properties of the resulting crosslinked hydrogel-based nanomaterials. Moreover, through the inclusion of nanoclays, our goal was to improve the printability and shape fidelity of nanocomposite scaffolds. The viscosity of all ink formulations was greater in the presence of inorganic nanoparticles as shear thinning occurred with increased shear rate. Hydrogel nanocomposites presented predominantly elastic rather than viscous behavior as the materials were crosslinked which led to improved mechanical properties. The inclusion of nanoclays in the biopolymeric matrix limited hydrogel swelling due the physical barrier effect but also because of the supplementary crosslinks induced by the clay layers. The distribution of inorganic filler within the GelMA-based hydrogels led to higher porosities as a consequence of their interaction with the biopolymeric ink. The present study could be useful for the development of soft nanomaterials foreseen for the additive manufacturing of customized implants for tissue engineering.
AUTHOR Nulty, Jessica and Burdis, Ross and Kelly, Daniel J.
Title Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Bone tissue engineering (TE) has the potential to transform the treatment of challenging musculoskeletal pathologies. To date, clinical translation of many traditional TE strategies has been impaired by poor vascularisation of the implant. Addressing such challenges has motivated research into developmentally inspired TE strategies, whereby implants mimicking earlier stages of a tissue’s development are engineered in vitro and then implanted in vivo to fully mature into the adult tissue. The goal of this study was to engineer in vitro tissues mimicking the immediate developmental precursor to long bones, specifically a vascularised hypertrophic cartilage template, and to then assess the capacity of such a construct to support endochondral bone formation in vivo. To this end, we first developed a method for the generation of large numbers of hypertrophic cartilage microtissues using a microwell system, and encapsulated these microtissues into a fibrin-based hydrogel capable of supporting vasculogenesis by human umbilical vein endothelial cells (HUVECs). The microwells supported the formation of bone marrow derived stem/stromal cell (BMSC) aggregates and their differentiation toward a hypertrophic cartilage phenotype over 5 weeks of cultivation, as evident by the development of a matrix rich in sulphated glycosaminoglycan (sGAG), collagen types I, II, and X, and calcium. Prevascularisation of these microtissues, undertaken in vitro 1 week prior to implantation, enhanced their capacity to mineralise, with significantly higher levels of mineralised tissue observed within such implants after 4 weeks in vivo within an ectopic murine model for bone formation. It is also possible to integrate such microtissues into 3D bioprinting systems, thereby enabling the bioprinting of scaled-up, patient-specific prevascularised implants. Taken together, these results demonstrate the development of an effective strategy for prevascularising a tissue engineered construct comprised of multiple individual microtissue “building blocks,” which could potentially be used in the treatment of challenging bone defects.
AUTHOR Falcones, Bryan and Sanz-Fraile, Héctor and Marhuenda, Esther and Mendizábal, Irene and Cabrera-Aguilera, Ignacio and Malandain, Nanthilde and Uriarte, Juan J. and Almendros, Isaac and Navajas, Daniel and Weiss, Daniel J. and Farré, Ramon and Otero, Jorge
Title Bioprintable Lung Extracellular Matrix Hydrogel Scaffolds for 3D Culture of Mesenchymal Stromal Cells [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.
AUTHOR Fisch, Philipp and Broguiere, Nicolas and Finkielsztein, Sergio and Linder, Thomas and Zenobi-Wong, Marcy
Title Bioprinting of Cartilaginous Auricular Constructs Utilizing an Enzymatically Crosslinkable Bioink [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting of functional tissues could overcome tissue shortages and allow a more rapid response for treatments. However, despite recent progress in bioprinting, and its outstanding ability to position cells and biomaterials in a precise 3D manner, its success has been limited, due to insufficient maturation of constructs into functional tissue. Here, a novel calcium-triggered enzymatic crosslinking (CTEC) mechanism for bioinks based on the activation cascade of Factor XIII is presented and utilized for the biofabrication of cartilaginous constructs. Hyaluronan transglutaminase (HA-TG), an enzymatically crosslinkable material, has shown excellent characteristics for chondrogenesis and builds the basis of the CTEC bioink. The bioink supports tissue maturation with neocartilage formation and stiffening of constructs up to 400 kPa. Bioprinted constructs remain stable in vivo for 24 weeks and bioprinted auricular constructs transform into cartilaginous grafts. A major limitation of the current study is the deposition of collagen I, indicating the maturation toward fibrocartilage rather than elastic cartilage. Shifting the maturation process toward elastic cartilage will therefore be essential in order for the developed bioinks to offer a novel tissue engineered treatment for microtia patients. CTEC bioprinting furthermore opens up use of enzymatically crosslinkable biopolymers and their modularity to support a multitude of tissues.
AUTHOR Fenelon, Mathilde and Etchebarne, Marion and Siadous, Robin and Grémare, Agathe and Durand, Marlène and Sentilhes, Loic and Catros, Sylvain and Gindraux, Florelle and L'Heureux, Nicolas and Fricain, Jean-Christophe
Title Comparison of amniotic membrane versus the induced membrane for bone regeneration in long bone segmental defects using calcium phosphate cement loaded with BMP-2 [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Thanks to its biological properties, the human amniotic membrane (HAM) combined with a bone substitute could be a single-step surgical alternative to the two-step Masquelet induced membrane (IM) technique for regeneration of critical bone defects. However, no study has directly compared these two membranes. We first designed a 3D-printed scaffold using calcium phosphate cement (CPC). We assessed its suitability in vitro to support human bone marrow mesenchymal stromal cells (hBMSCs) attachment and osteodifferentiation. We then performed a rat femoral critical size defect to compare the two-step IM technique with a single-step approach using the HAM. Five conditions were compared. Group 1 was left empty. Group 2 received the CPC scaffold loaded with rh-BMP2 (CPC/BMP2). Group 3 and 4 received the CPC/BMP2 scaffold covered with lyophilized or decellularized/lyophilized HAM. Group 5 underwent a two- step induced membrane procedure with insertion of a polymethylmethacrylate (PMMA) spacer followed by, after 4 weeks, its replacement with the CPC/BMP2 scaffold wrapped in the IM. Micro-CT and histomorphometric analysis were performed after six weeks. Results showed that the CPC scaffold supported the proliferation and osteodifferentiation of hBMSCs in vitro. In vivo, the CPC/BMP2 scaffold very efficiently induced bone formation and led to satisfactory healing of the femoral defect, in a single-step, without autograft or the need for any membrane covering. In this study, there was no difference between the two-step induced membrane procedure and a single step approach. However, the results indicated that none of the tested membranes further enhanced bone healing compared to the CPC/BMP2 group.
AUTHOR Zhang, Xiao and Liu, Yang and Luo, Chunyang and Zhai, Chenjun and Li, Zuxi and Zhang, Yi and Yuan, Tao and Dong, Shilei and Zhang, Jiyong and Fan, Weimin
Title Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
As cartilage tissue lacks the innate ability to mount an adequate regeneration response, damage to it is detrimental to the quality of life of the subject. The emergence of three-dimensional bioprinting (3DBP) technology presents an opportunity to repair articular cartilage defects. However, widespread adoption of this technique has been impeded by difficulty in preparing a suitable bioink and the toxicity inherent in the chemical crosslinking process of most bioinks. Our objective was to develop a crosslinker-free bioink with the same biological activity as the original cartilage extracellular matrix (ECM) and good mechanical strength. We prepared bioinks containing different concentrations of silk fibroin and decellularized extracellular matrix (SF-dECM bioinks) mixed with bone marrow mesenchymal stem cells (BMSCs) for 3D bioprinting. SF and dECM interconnect with each other through physical crosslinking and entanglement. A porous structure was formed by removing the polyethylene glycol from the SF-dECM bioink. The results showed the SF-dECM construct had a suitable mechanical strength and degradation rate, and the expression of chondrogenesis-specific genes was found to be higher than that of the SF control construct group. Finally, we confirmed that a SF-dECM construct that was designed to release TGF-β3 had the ability to promote chondrogenic differentiation of BMSCs and provided a good cartilage repair environment, suggesting it is an ideal scaffold for cartilage tissue engineering.
AUTHOR Li, Huijun and Zheng, Han and Tan, Yu Jun and Tor, Shu Beng and Zhou, Kun
Title Development of an Ultrastretchable Double-Network Hydrogel for Flexible Strain Sensors [Abstract]
Year 2021
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
The weak mechanical properties of hydrogels due to the inefficient dissipation of energy in the intrinsic structures limit their practical applications. Here, a double-network (DN) hydrogel has been developed by integrating an ionically cross-linked agar network, a covalently cross-linked acrylic acid (AAC) network, and the dynamic and reversible ionically cross-linked coordination between the AAC chains and Fe3+ ions. The proposed model reveals the mechanisms of the improved mechanical performances in the DN agar/AAC-Fe3+ hydrogel. The hydrogen-bond cross-linked double helices of agar and ionic-coordination interactions of AAC-Fe3+ can be temporarily sacrificed during large deformation to readily dissipate the energy, whereas the reversible AAC-Fe3+ interactions can be regenerated after stress relief, which greatly increases the material toughness. The developed DN hydrogel demonstrates a remarkable stretchability with a break strain up to 3174.3%, high strain sensitivity with the gauge factor being 0.83 under a strain of 1000%, and good 3D printability, making the material a desirable candidate for fabricating flexible strain sensors, electronic skin, and soft robots. The weak mechanical properties of hydrogels due to the inefficient dissipation of energy in the intrinsic structures limit their practical applications. Here, a double-network (DN) hydrogel has been developed by integrating an ionically cross-linked agar network, a covalently cross-linked acrylic acid (AAC) network, and the dynamic and reversible ionically cross-linked coordination between the AAC chains and Fe3+ ions. The proposed model reveals the mechanisms of the improved mechanical performances in the DN agar/AAC-Fe3+ hydrogel. The hydrogen-bond cross-linked double helices of agar and ionic-coordination interactions of AAC-Fe3+ can be temporarily sacrificed during large deformation to readily dissipate the energy, whereas the reversible AAC-Fe3+ interactions can be regenerated after stress relief, which greatly increases the material toughness. The developed DN hydrogel demonstrates a remarkable stretchability with a break strain up to 3174.3%, high strain sensitivity with the gauge factor being 0.83 under a strain of 1000%, and good 3D printability, making the material a desirable candidate for fabricating flexible strain sensors, electronic skin, and soft robots.
AUTHOR Kamdem Tamo, Arnaud and Doench, Ingo and Walter, Lukas and Montembault, Alexandra and Sudre, Guillaume and David, Laurent and Morales-Helguera, Aliuska and Selig, Mischa and Rolauffs, Bernd and Bernstein, Anke and Hoenders, Daniel and Walther, Andreas and Osorio-Madrazo, Anayancy
Title Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL DOI
Abstract
Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable from hard tissues by their low mineral and high water content. In this work, we proposed the development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose nanofibers (CNFs), both without any chemical modification, which processing did not incorporate any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new strategies for the design of environmentally friendly high mechanical performance composites. In the here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing (EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low concentrations of chitosan (2.0–3.0% (w/v)) and cellulose nanofibers (0.2–0.4% (w/v)). CHI/CNF printed hydrogels with good mechanical performance (Young’s modulus 3.0 MPa, stress at break 1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D printability, resolution, and quality of the constructs (microstructure and mechanical properties), resulting in good cell viability. This work allows expanding the library of the so far used biopolymer compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.
AUTHOR Curti, Filis and Drăgușin, Diana-Maria and Serafim, Andrada and Iovu, Horia and Stancu, Izabela-Cristina
Title Development of thick paste-like inks based on superconcentrated gelatin/alginate for 3D printing of scaffolds with shape fidelity and stability [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Shape fidelity and integrity are serious challenges in the 3D printing of hydrogel precursors, as they can influence the overall performance of 3D scaffolds. This work reports the development of superconcentrated inks based on sodium alginate and fish gelatin as an appealing strategy to satisfy such challenges and dictate the quality of the printed scaffolds, without using crosslinking strategies during 3D printing. SEM micrographs and micro-CT images indicate the homogeneous distribution of the polysaccharide in the gelatin-based matrix, suggesting its potential to act as a reinforcing additive. The high concentration of gelatin aqueous solution (50 wt%) and substantial incorporation of alginate have facilitated the highly accurate printability and influence the in vitro stability and mechanical properties of the printed scaffolds. An improvement of the stiffness is dictated by the increase of alginate concentration from 20 wt% to 25 wt%, and an increase of Young modulus with about 46% is reached, confirming the reinforcing effect of polysaccharide. This study highlights the potential of paste-type inks to provide high resolution 3D printed structures with appealing structural and dimensional stability, in vitro degradability and mechanical properties for biomedical applications.
AUTHOR Chen, Shengyang and Shi, Qian and Jang, Taesik and Ibrahim, Mohammed Shahrudin Bin and Deng, Jingyu and Ferracci, Gaia and Tan, Wen See and Cho, Nam-Joon and Song, Juha
Title Engineering Natural Pollen Grains as Multifunctional 3D Printing Materials [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract The development of multifunctional 3D printing materials from sustainable natural resources is a high priority in additive manufacturing. Using an eco-friendly method to transform hard pollen grains into stimulus-responsive microgel particles, we engineered a pollen-derived microgel suspension that can serve as a functional reinforcement for composite hydrogel inks and as a supporting matrix for versatile freeform 3D printing systems. The pollen microgel particles enabled the printing of composite inks and improved the mechanical and physiological stabilities of alginate and hyaluronic acid hydrogel scaffolds for 3D cell culture applications. Moreover, the particles endowed the inks with stimulus-responsive controlled release properties. The suitability of the pollen microgel suspension as a supporting matrix for freeform 3D printing of alginate and silicone rubber inks was demonstrated and optimized by tuning the rheological properties of the microgel. Compared with other classes of natural materials, pollen grains have several compelling features, including natural abundance, renewability, affordability, processing ease, monodispersity, and tunable rheological features, which make them attractive candidates to engineer advanced materials for 3D printing applications.
AUTHOR Oliveira, Hugo and Médina, Chantal and Stachowicz, Marie-Laure and Paiva dos Santos, Bruno and Chagot, Lise and Dusserre, Nathalie and Fricain, Jean-Christophe
Title Extracellular matrix (ECM)-derived bioinks designed to foster vasculogenesis and neurite outgrowth: Characterization and bioprinting [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration approaches. In this scope, the lack of suitable biomaterials that can be efficiently formulated as printable bioinks, while supporting specific cellular events, is currently considered as one of the main limitations in the field. Indeed, extracellular matrix (ECM)-derived biomaterials formulated to enable printability and support cellular response, for instance via integrin binding, are eagerly awaited in the field of bioprinting. Several bioactive laminin sequences, including peptides such as YIGSR and IKVAV, have been identified to promote endothelial cell attachment and/or neurite outgrowth and guidance, respectively. Here, we show the development of two distinct bioinks, designed to foster vasculogenesis or neurogenesis, based on methacrylated collagen and hyaluronic acid (CollMA and HAMA, respectively), both relevant ECM-derived polymers, and on their combination with cysteine-flanked laminin-derived peptides. Using this strategy, it was possible to optimize the bioink printability, by tuning CollMA and HAMA concentration and ratio, and modulate their bioactivity, through adjustments in the cell-active peptide sequence spatial density, without compromising cell viability. We demonstrated that cell-specific bioinks could be customized for the bioprinting of both human umbilical vein cord endothelial cells (HUVECs) or adult rat sensory neurons from the dorsal root ganglia, and could stimulate both vasculogenesis and neurite outgrowth, respectively. This approach holds great potential as it can be tailored to other cellular models, due to its inherent capacity to accommodate different peptide compositions and to generate complex peptide mixtures and/or gradients.
AUTHOR Tarun Agarwal and Marco Costantini and Tapas Kumar Maiti
Title Extrusion 3D printing with Pectin-based ink formulations: Recent trends in tissue engineering and food manufacturing [Abstract]
Year 2021
Journal/Proceedings Biomedical Engineering Advances
Reftype
DOI/URL URL DOI
Abstract
3D printing technologies are rapidly revolutionizing all manufacturing sectors due to their ability to create objects with complex geometries in a reproducible and automated manner using material/cell-based formulations, precisely termed printing inks. In this regard, pectin, a naturally occurring plant polysaccharide, has been proposed as a potential component of ink formulations. In this mini-review, we would overview the most recent advances made with pectin-based inks in the fields of tissue engineering and food manufacturing. We also discuss various strategies used to formulate 3D printable pectin inks. Finally, various challenges and prospects for future development are discussed.
AUTHOR Götz, Lisa-Marie and Holeczek, Katharina and Groll, Jürgen and Jüngst, Tomasz and Gbureck, Uwe
Title Extrusion-Based 3D Printing of Calcium Magnesium Phosphate Cement Pastes for Degradable Bone Implants [Abstract]
Year 2021
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
This study aimed to develop printable calcium magnesium phosphate pastes that harden by immersion in ammonium phosphate solution post-printing. Besides the main mineral compound, biocompatible ceramic, magnesium oxide and hydroxypropylmethylcellulose (HPMC) were the crucial components. Two pastes with different powder to liquid ratios of 1.35 g/mL and 1.93 g/mL were characterized regarding their rheological properties. Here, ageing over the course of 24 h showed an increase in viscosity and extrusion force, which was attributed to structural changes in HPMC as well as the formation of magnesium hydroxide by hydration of MgO. The pastes enabled printing of porous scaffolds with good dimensional stability and enabled a setting reaction to struvite when immersed in ammonium phosphate solution. Mechanical performance under compression was approx. 8–20 MPa as a monolithic structure and 1.6–3.0 MPa for printed macroporous scaffolds, depending on parameters such as powder to liquid ratio, ageing time, strand thickness and distance.
AUTHOR Zhang, Danwei and Jonhson, Win and Herng, Tun Seng and Xu, Xi and Liu, Xiaojing and Pan, Liang-ming and He, Hui and Ding, Jun
Title High Temperature Co-firing of 3D-Printed Al-ZnO/Al2O3 Multi-Material Two-Phase Flow Sensor [Abstract]
Year 2021
Journal/Proceedings Journal of Materiomics
Reftype
DOI/URL URL DOI
Abstract
Sensors are crucial in the understanding of machines working under high temperatures and high-pressure conditions. Current devices utilize polymeric materials as electrical insulators which pose a challenge in the device’s lifespan. Ceramics, on the other hand, is robust and able to withstand high temperature and pressure. For such applications, a co-fired ceramic device which can provide both electrical conductivity and insulation is beneficial and acts as a superior candidate for sensor devices. In this paper, we propose a novel fabrication technique of complex multi-ceramics structures via 3D printing. This fabrication methodology increases both the geometrical complexity and the device’s shape precision. Structural ceramics (alumina) was employed as the electrical insulator whilst providing mechanical rigidity while a functional ceramic (alumina-doped zinc oxide) was employed as the electrically conductive material. The addition of sintering additives, tailoring the printing pastes’ solid loadings and heat treatment profile resolves multi-materials printing challenges such as shrinkage disparity and densification matching. Through high-temperature co-firing of ceramics (HTCC) technology, dense high quality functional multi-ceramics structures are achieved. The proposed fabrication methodology paves the way for multi-ceramics sensors to be utilized in high temperature and pressure systems in the near future.
AUTHOR Tan, Edgar Y. S. and Suntornnond, Ratima and Yeong, Wai Yee
Title High-Resolution Novel Indirect Bioprinting of Low-Viscosity Cell-Laden Hydrogels via Model-Support Bioink Interaction [Abstract]
Year 2021
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting of unmodified soft extracellular matrix into complex 3D structures has remained challenging to fabricate. Herein, we established a novel process for the printing of low-viscosity hydrogel by using a unique support technique to retain the structural integrity of the support structure. We demonstrated that this process of printing could be used for different types of hydrogel, ranging from fast crosslinking gelatin methacrylate to slow crosslinking collagen type I. In addition, we evaluated the biocompatibility of the process by observing the effects of the cytotoxicity of L929 and the functionality of the human umbilical vein endothelium primary cells after printing. The results show that the bioprinted construct provided excellent biocompatibility as well as supported cell growth and differentiation. Thus, this is a novel technique that can be potentially used to enhance the resolution of the extrusion-based bioprinter.
AUTHOR Lechner, Annika and Trossmann, Vanessa T. and Scheibel, Thomas
Title Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability [Abstract]
Year 2021
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract Printability of bioinks encompasses considerations concerning rheology and extrudability, characterization of filament formation, shape fidelity, cell viability and post-printing cellular development. Recombinant spider silk based hydrogels might be a suitable material to be used in bioinks, i.e. a formulation of cells and materials to be used for bioprinting. Here, the high shape fidelity of spider silk ink is shown by bioprinting the shape and size of a human aortic valve. Further the influence of the encapsulation of cells has been evaluated on spider silk hydrogel formation, hydrogel mechanics, and shape fidelity upon extrusion based bioprinting. It is shown that the presence of cells impacts gelation of spider silk proteins differently depending on the used silk variant. RGD-modified spider silk hydrogels are physically crosslinked by the cells, while there is no active interaction between cells and un-tagged spider silk proteins. Strikingly, even at cell densities up to ten million cells/ml, cell viability is high after extrusion based printing which is a significant prerequisite for future applications. Shape fidelity of the printed constructs is demonstrated using a filament collapse test in absence and presence of human cells. This article is protected by copyright. All rights reserved
AUTHOR Trucco, Diego and Sharma, Aarushi and Manferdini, Cristina and Gabusi, Elena and Petretta, Mauro and Desando, Giovanna and Ricotti, Leonardo and Chakraborty, Juhi and Ghosh, Sourabh and Lisignoli, Gina
Title Modeling and Fabrication of Silk Fibroin-Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting [Abstract]
Year 2021
Journal/Proceedings ACS Biomater. Sci. Eng.
Reftype
DOI/URL DOI
Abstract
Robotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure’s fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs’ fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications. Robotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure’s fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs’ fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications.
AUTHOR Plou, Javier and Charconnet, Mathias and García, Isabel and Calvo, Javier and Liz-Marzán, Luis M.
Title Preventing Memory Effects in Surface-Enhanced Raman Scattering Substrates by Polymer Coating and Laser-Activated Deprotection [Abstract]
Year 2021
Journal/Proceedings ACS Nano
Reftype
DOI/URL DOI
Abstract
The development of continuous monitoring systems requires in situ sensors that are capable of screening multiple chemical species and providing real-time information. Such in situ measurements, in which the sample is analyzed at the point of interest, are hindered by underlying problems derived from the recording of successive measurements within complex environments. In this context, surface-enhanced Raman scattering (SERS) spectroscopy appears as a noninvasive technology with the ability of identifying low concentrations of chemical species as well as resolving dynamic processes under different conditions. To this aim, the technique requires the use of a plasmonic substrate, typically made of nanostructured metals such as gold or silver, to enhance the Raman signal of adsorbed molecules (the analyte). However, a common source of uncertainty in real-time SERS measurements originates from the irreversible adsorption of (analyte) molecules onto the plasmonic substrate, which may interfere in subsequent measurements. This so-called “SERS memory effect” leads to measurements that do not accurately reflect varying conditions of the sample over time. We introduce herein the design of plasmonic substrates involving a nonpermeable poly(lactic-co-glycolic acid) (PLGA) thin layer on top of the plasmonic nanostructure, toward controlling the adsorption of molecules at different times. The polymeric layer can be locally degraded by irradiation with the same laser used for SERS measurements (albeit at a higher fluence), thereby creating a micrometer-sized window on the plasmonic substrate available to molecules present in solution at a selected measurement time. Using SERS substrates coated with such thermolabile polymer layers, we demonstrate the possibility of performing over 10,000 consecutive measurements per substrate as well as accurate continuous monitoring of analytes in microfluidic channels and biological systems. The development of continuous monitoring systems requires in situ sensors that are capable of screening multiple chemical species and providing real-time information. Such in situ measurements, in which the sample is analyzed at the point of interest, are hindered by underlying problems derived from the recording of successive measurements within complex environments. In this context, surface-enhanced Raman scattering (SERS) spectroscopy appears as a noninvasive technology with the ability of identifying low concentrations of chemical species as well as resolving dynamic processes under different conditions. To this aim, the technique requires the use of a plasmonic substrate, typically made of nanostructured metals such as gold or silver, to enhance the Raman signal of adsorbed molecules (the analyte). However, a common source of uncertainty in real-time SERS measurements originates from the irreversible adsorption of (analyte) molecules onto the plasmonic substrate, which may interfere in subsequent measurements. This so-called “SERS memory effect” leads to measurements that do not accurately reflect varying conditions of the sample over time. We introduce herein the design of plasmonic substrates involving a nonpermeable poly(lactic-co-glycolic acid) (PLGA) thin layer on top of the plasmonic nanostructure, toward controlling the adsorption of molecules at different times. The polymeric layer can be locally degraded by irradiation with the same laser used for SERS measurements (albeit at a higher fluence), thereby creating a micrometer-sized window on the plasmonic substrate available to molecules present in solution at a selected measurement time. Using SERS substrates coated with such thermolabile polymer layers, we demonstrate the possibility of performing over 10,000 consecutive measurements per substrate as well as accurate continuous monitoring of analytes in microfluidic channels and biological systems.
AUTHOR Iria Seoane-Viaño and Patricija Januskaite and Carmen Alvarez-Lorenzo and Abdul W. Basit and Alvaro Goyanes
Title Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges [Abstract]
Year 2021
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI