APPLICATION NOTES
BROCHURES / DOCUMENTATION
SCIENTIFIC PUBLICATIONS
You are researching: Myiongji University
Drug Discovery
Cancer Cell Lines
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
All Groups
- Printing Technology
- Biomaterial
- Ceramics
- Metals
- Bioinks
- Fibronectin
- Xanthan Gum
- Paeoniflorin
- Methacrylated Silk Fibroin
- Heparin
- Fibrinogen
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Carrageenan
- Chitosan
- Glycerol
- Poly(glycidol)
- Agarose
- methacrylated chondroitin sulfate (CSMA)
- Silk Fibroin
- Methacrylated hyaluronic acid (HAMA)
- Gellan Gum
- Alginate
- Gelatin-Methacryloyl (GelMA)
- Cellulose
- Hyaluronic Acid
- Polyethylene glycol (PEG) based
- Collagen
- Gelatin
- Novogel
- Peptide gel
- α-Bioink
- Elastin
- Matrigel
- Methacrylated Chitosan
- Pectin
- Pyrogallol
- Fibrin
- Methacrylated Collagen (CollMA)
- Glucosamine
- Non-cellularized gels/pastes
- 2-hydroxyethyl) methacrylate (HEMA)
- Paraffin
- Polyphenylene Oxide
- Acrylamide
- SEBS
- Ionic Liquids
- Jeffamine
- Mineral Oil
- Salecan
- Zein
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- Polyvinylpyrrolidone (PVP)
- Salt-based
- Acrylates
- 2-hydroxyethyl-methacrylate (HEMA)
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Polyethylene
- Silicone
- Pluronic – Poloxamer
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Phenylacetylene
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- Polyisobutylene
- Konjac Gum
- Gelatin-Sucrose Matrix
- Chlorella Microalgae
- Poly(Vinyl Formal)
- Thermoplastics
- Micro/nano-particles
- Biological Molecules
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Review Paper
- Application
- Tissue Models – Drug Discovery
- BioSensors
- Personalised Pharmaceuticals
- In Vitro Models
- Bioelectronics
- Industrial
- Robotics
- Medical Devices
- Electronics – Robotics – Industrial
- Biomaterial Processing
- Tissue and Organ Biofabrication
- Liver tissue Engineering
- Muscle Tissue Engineering
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Vascularization
- Skin Tissue Engineering
- Drug Delivery
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Discovery
- Institution
- Myiongji University
- Hong Kong University
- Veterans Administration Medical Center
- University of Applied Sciences Northwestern Switzerland
- University of Michigan, Biointerfaces Institute
- Sree Chitra Tirunal Institute
- Kaohsiung Medical University
- Baylor College of Medicine
- L'Oreal
- University of Bordeaux
- KU Leuven
- Abu Dhabi University
- University of Sheffield
- DTU – Technical University of Denmark
- Hefei University
- Rice University
- University of Barcelona
- INM – Leibniz Institute for New Materials
- University of Nantes
- Institute for Bioengineering of Catalonia (IBEC)
- University of Amsterdam
- Bayreuth University
- Ghent University
- National University of Singapore
- Adolphe Merkle Institute Fribourg
- Zurich University of Applied Sciences (ZHAW)
- Hallym University
- University of Wurzburg
- AO Research Institute (ARI)
- Chalmers University of Technology
- ETH Zurich
- Nanyang Technological University
- Utrecht Medical Center (UMC)
- University of Manchester
- University of Nottingham
- Trinity College
- National Institutes of Health (NIH)
- Rizzoli Orthopaedic Institute
- University of Bucharest
- Innotere
- Nanjing Medical University
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Queen Mary University
- Royal Free Hospital
- SINTEF
- University of Central Florida
- University of Freiburg
- Halle-Wittenberg University
- CIC biomaGUNE
- Chiao Tung University
- University of Geneva
- Novartis
- Karlsruhe institute of technology
- Shanghai University
- Technical University of Dresden
- University of Michigan – School of Dentistry
- University of Tel Aviv
- Aschaffenburg University
- Univerity of Hong Kong
- Chinese Academy of Sciences
- Helmholtz Institute for Pharmaceutical Research Saarland
- Brown University
- Innsbruck University
- National Yang Ming Chiao Tung University
- Tiangong University
- Harbin Institute of Technology
- Montreal University
- Anhui Polytechnic
- Jiao Tong University
- University of Toronto
- Politecnico di Torino
- Biomaterials & Bioinks
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- Organoids
- Meniscus Cells
- Skeletal Muscle-Derived Cells (SkMDCs)
- Hepatocytes
- Monocytes
- Neutrophils
- Macrophages
- Corneal Stromal Cells
- Mesothelial cells
- Adipocytes
- Synoviocytes
- Human Trabecular Meshwork Cells
- Epithelial
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Spheroids
- Keratinocytes
- Neurons
- Endothelial
- CardioMyocites
- Osteoblasts
- Articular cartilage progenitor cells (ACPCs)
- Cancer Cell Lines
- Chondrocytes
- Fibroblasts
- Myoblasts
- Melanocytes
- Retinal
- Embrionic Kidney (HEK)
- β cells
- Pericytes
- Bacteria
- Tenocytes
- Stem Cells
AUTHOR
Year
2022
Journal/Proceedings
Small
Reftype
DOI/URL
DOI
Groups
AbstractAbstract Liquid metals (LMs) and alloys are attracting increasing attention owing to their combined advantages of high conductivity and fluidity, and have shown promising results in various emerging applications. Patterning technologies using LMs are being actively researched; among them, direct ink writing is considered a potentially viable approach for efficient LM additive manufacturing. However, true LM additive manufacturing with arbitrary printing geometries remains challenging because of the intrinsically low rheological strength of LMs. Herein, colloidal suspensions of LM droplets amenable to additive manufacturing (or “3D printing”) are realized using formulations containing minute amounts of liquid capillary bridges. The resulting LM suspensions exhibit exceptionally high rheological strength with yield stress values well above 103 Pa, attributed to inter-droplet capillary attraction mediated by the liquid bridges adsorbed on the oxide skin of the LM droplets. Such liquid-bridged LM suspensions, as extrudable ink-type filaments, are based on uncurable continuous-phase liquid media, have a long pot-life and outstanding shear-thinning properties, and shape retention, demonstrating excellent rheological processability suitable for 3D printing. These findings will enable the emergence of a variety of new advanced applications that necessitate LM patterning into highly complicated multidimensional structures.
AUTHOR
Title
A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions
[Abstract]
Year
2021
Journal/Proceedings
Journal of Colloid and Interface Science
Reftype
Groups
AbstractThree-dimensional (3D) printing technology is actively utilized in various industrial fields because it facilitates effective and customizable fabrication of complex structures. An important processing route for 3D printing is the extrusion of inks in the form of colloidal suspensions or emulsions, which has recently attracted considerable attention because it allows for selection of a wide range of printing materials and is operable under ambient processing conditions. Herein, we investigate the 3D printability of complex fluids containing chlorella microalgae as an eco-friendly material for 3D printing. Two possible ink types are considered: aqueous chlorella suspensions and emulsions of oil and water mixtures. While the aqueous chlorella suspensions at high particle loading display the 3D-printable rheological properties such as high yield stress and good shape retention, the final structures after extruding and drying the suspensions under ambient conditions show a significant number of macroscopic defects, limiting their practical application. In contrast, the 3D structures produced from the oil-in-water Pickering emulsions stabilized by chlorella microalgae, which are amphiphilic and active at the oil–water interface, show significantly reduced defect formation. Addition of a fast-evaporable oil phase, hexane, is crucial in the mechanisms of enhanced cementation between the individual microalgae via increased inter-particle packing, capillary attraction, and hydrophobic interaction. Furthermore, addition of solid paraffin wax, which is crystalline but well-soluble in the hydrocarbon oil phase under ambient conditions, completely eliminates the undesirable defect formation via enhanced inter-particle binding, while maintaining the overall rheological properties of the emulsion. The optimal formulation of the Pickering emulsion is finally employed to produce a 3D scaffold of satisfactory structural integrity, suggesting that the chlorella-based ink, in the form of an emulsion, has potential as an eco-friendly 3D printing ink processable under ambient conditions.