BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Chlorella Microalgae
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Review Paper
- Printing Technology
- Biomaterial
- Non-cellularized gels/pastes
- Epoxy
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- poly (ethylene-co -vinyl acetate) (PEVA)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Poly(trimethylene carbonate)
- Paraffin
- Pluronic – Poloxamer
- Polyisobutylene
- Polyphenylene Oxide
- Ionic Liquids
- Silicone
- Konjac Gum
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Salecan
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- Jeffamine
- Poly(methyl methacrylate) (PMMA)
- PEDOT
- SEBS
- Polypropylene Oxide (PPO)
- Polyethylene
- Sucrose Acetate
- Carbopol
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Xanthan Gum
- Silk Fibroin
- Pyrogallol
- Paeoniflorin
- Fibronectin
- Fibrinogen
- Fibrin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- carboxybetaine acrylamide (CBAA)
- Cellulose
- Novogel
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
- Hyaluronic Acid
- Peptide gel
- Poly(Acrylic Acid)
- Polyethylene glycol (PEG) based
- α-Bioink
- Heparin
- sulfobetaine methacrylate (SBMA)
- Collagen
- Elastin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Ceramics
- Metals
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Thermoplastics
- Coaxial Extruder
- Non-cellularized gels/pastes
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- CardioMyocites
- Melanocytes
- Retinal
- Corneal Stromal Cells
- Annulus Fibrosus Cells
- Chondrocytes
- Embrionic Kidney (HEK)
- Astrocytes
- Fibroblasts
- β cells
- Hepatocytes
- Myoblasts
- Pericytes
- Epicardial Cells
- Cancer Cell Lines
- Bacteria
- Extracellular Vesicles
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Monocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Osteoblasts
- Neutrophils
- Adipocytes
- Smooth Muscle Cells
- Epithelial
- T cells
- Organoids
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Meniscus Cells
- Synoviocytes
- Stem Cells
- Spheroids
- Skeletal Muscle-Derived Cells (SkMDCs)
- Keratinocytes
- Macrophages
- Human Trabecular Meshwork Cells
- Neurons
- Endothelial
- Institution
- SINTEF
- Rice University
- Jiangsu University
- University of Nottingham
- University of Geneva
- University of Central Florida
- Hefei University
- Leibniz University Hannover
- Trinity College
- Novartis
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- Chalmers University of Technology
- Karlsruhe institute of technology
- Univerity of Hong Kong
- University of Toronto
- Brown University
- Polish Academy of Sciences
- AO Research Institute (ARI)
- Shanghai University
- University of Nantes
- Montreal University
- Shandong Medical University
- University of Wurzburg
- Technical University of Dresden
- Myiongji University
- Harbin Institute of Technology
- Technical University of Berlin
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- University Children's Hospital Zurich
- University of Amsterdam
- University of Tel Aviv
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- University of Aveiro
- Bayreuth University
- Aschaffenburg University
- Sree Chitra Tirunal Institute
- University of Sheffield
- University of Michigan – Biointerfaces Institute
- Ghent University
- Chiao Tung University
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- University of Taiwan
- National University of Singapore
- CIC biomaGUNE
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- University of Vilnius
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- L'Oreal
- Tiangong University
- Xi’an Children’s Hospital
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- University of Bordeaux
- Innsbruck University
- DWI – Leibniz Institute
- ETH Zurich
- Hallym University
- Nanjing Medical University
- KU Leuven
- Politecnico di Torino
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Veterans Administration Medical Center
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- ENEA
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Tissue Models – Drug Discovery
- Industrial
- Biomaterial Processing
- In Vitro Models
- Robotics
- Drug Discovery
- Medical Devices
- Electronics – Robotics – Industrial
- Tissue and Organ Biofabrication
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Muscle Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Dental Tissue Engineering
- Bone Tissue Engineering
- Urethra Tissue Engineering
- Drug Delivery
- Uterus Tissue Engineering
- Skin Tissue Engineering
- Nerve – Neural Tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
AUTHOR
Title
A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions
[Abstract]
Year
2021
Journal/Proceedings
Journal of Colloid and Interface Science
Reftype
Groups
AbstractThree-dimensional (3D) printing technology is actively utilized in various industrial fields because it facilitates effective and customizable fabrication of complex structures. An important processing route for 3D printing is the extrusion of inks in the form of colloidal suspensions or emulsions, which has recently attracted considerable attention because it allows for selection of a wide range of printing materials and is operable under ambient processing conditions. Herein, we investigate the 3D printability of complex fluids containing chlorella microalgae as an eco-friendly material for 3D printing. Two possible ink types are considered: aqueous chlorella suspensions and emulsions of oil and water mixtures. While the aqueous chlorella suspensions at high particle loading display the 3D-printable rheological properties such as high yield stress and good shape retention, the final structures after extruding and drying the suspensions under ambient conditions show a significant number of macroscopic defects, limiting their practical application. In contrast, the 3D structures produced from the oil-in-water Pickering emulsions stabilized by chlorella microalgae, which are amphiphilic and active at the oil–water interface, show significantly reduced defect formation. Addition of a fast-evaporable oil phase, hexane, is crucial in the mechanisms of enhanced cementation between the individual microalgae via increased inter-particle packing, capillary attraction, and hydrophobic interaction. Furthermore, addition of solid paraffin wax, which is crystalline but well-soluble in the hydrocarbon oil phase under ambient conditions, completely eliminates the undesirable defect formation via enhanced inter-particle binding, while maintaining the overall rheological properties of the emulsion. The optimal formulation of the Pickering emulsion is finally employed to produce a 3D scaffold of satisfactory structural integrity, suggesting that the chlorella-based ink, in the form of an emulsion, has potential as an eco-friendly 3D printing ink processable under ambient conditions.