SCIENTIFIC PUBLICATIONS

You are researching: Micro/nano-particles
Matching entries: 66 /66
All Groups
AUTHOR Asulin, Masha and Michael, Idan and Shapira, Assaf and Dvir, Tal
Title One-Step 3D Printing of Heart Patches with Built-In Electronics for Performance Regulation [Abstract]
Year 2021
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Three dimensional (3D) printing of heart patches usually provides the ability to precisely control cell location in 3D space. Here, one-step 3D printing of cardiac patches with built-in soft and stretchable electronics is reported. The tissue is simultaneously printed using three distinct bioinks for the cells, for the conducting parts of the electronics and for the dielectric components. It is shown that the hybrid system can withstand continuous physical deformations as those taking place in the contracting myocardium. The electronic patch is flexible, stretchable, and soft, and the electrodes within the printed patch are able to monitor the function of the engineered tissue by providing extracellular potentials. Furthermore, the system allowed controlling tissue function by providing electrical stimulation for pacing. It is envisioned that such transplantable patches may regain heart contractility and allow the physician to monitor the implant function as well as to efficiently intervene from afar when needed.
AUTHOR Afanasenkau, Dzmitry and Kalinina, Daria and Lyakhovetskii, Vsevolod and Tondera, Christoph and Gorsky, Oleg and Moosavi, Seyyed and Pavlova, Natalia and Merkulyeva, Natalia and Kalueff, Allan V. and Minev, Ivan R. and Musienko, Pavel
Title Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces [Abstract]
Year 2020
Journal/Proceedings Nature Biomedical Engineering
Reftype Afanasenkau2020
DOI/URL DOI
Abstract
Neuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability. This technology might enable personalized bioelectronics for neuroprosthetic applications.
AUTHOR Pless, Christian J. and Nikzad, Shayla and Papiano, Irene and Gnanadass, Samson and Kadumudi, Firoz B. and Dolatshahi-Pirouz, Alireza and Thomsen, Carsten Eckhart and Lind, Johan U.
Title Soft Electronic Block Copolymer Elastomer Composites for Multi-Material Printing of Stretchable Physiological Sensors on Textiles [Abstract]
Year 2023
Journal/Proceedings Advanced Electronic Materials
Reftype
DOI/URL DOI
Abstract
Abstract Soft and stretchable electronic materials have a number of unique applications, not least within sensors for monitoring human health. Through development of appropriate inks, micro-extrusion 3D printing offers an appealing route for integrating soft electronic materials within wearable garments. Toward this objective, here a series of conductive inks based on soft thermoplastic styrene–ethylene–butylene–styrene elastomers combined with silver micro-flakes, carbon black nanoparticles, or poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer additives, is developed. Their electrical and mechanical properties are systematically compared and found to be highly dependent on additive amount and type. Thus, while silver composites offer the highest conductivity, their stretchability is far inferior to carbon black composites, which can maintain conductivity beyond 400% strain. The PEDOT composites are the least conductive and stretchable but display unique properties due to their propensity for ionic conductivity. To integrate these inks, as well as insulating counterparts, into functional designs, a multi-material micro-extrusion 3D printing routine for direct deposition onto stretchable, elastic fabrics is established. As demonstration, prototypes are produced for sensing common health markers including strain, physiological temperatures, and electrocardiograms. Collectively, this work demonstrates multi-material 3D printing of soft styrene–ethylene–butylene–styrene elastomer composites as a versatile method for fabricating soft bio-sensors.
AUTHOR Schaffner, Manuel and R{"u}hs, Patrick A. and Coulter, Fergal and Kilcher, Samuel and Studart, Andr{'e} R.
Title 3D printing of bacteria into functional complex materials [Abstract]
Year 2017
Journal/Proceedings Science Advances
Reftype
DOI/URL URL DOI
Abstract
Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of {textquotedblleft}living materials{textquotedblright} capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.
AUTHOR Cernencu, Alexandra I. and Vlasceanu, George M. and Serafim, Andrada and Pircalabioru, Gratiela and Ionita, Mariana
Title 3D double-reinforced graphene oxide – nanocellulose biomaterial inks for tissue engineered constructs [Abstract]
Year 2023
Journal/Proceedings RSC Adv.
Reftype
DOI/URL DOI
Abstract
The advent of improved fabrication technologies{,} particularly 3D printing{,} has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However{,} inks made from natural polymers often fall short in terms of mechanical strength{,} stability{,} and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks{,} bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity{,} 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25{,} 0.5{,} and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting{,} the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.
AUTHOR Daskalakis, Evangelos and Hassan, Mohamed H. and Omar, Abdalla M. and Acar, Anil A. and Fallah, Ali and Cooper, Glen and Weightman, Andrew and Blunn, Gordon and Koc, Bahattin and Bartolo, Paulo
Title Accelerated Degradation of Poly-ε-caprolactone Composite Scaffolds for Large Bone Defects [Abstract]
Year 2023
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
This research investigates the accelerated hydrolytic degradation process of both anatomically designed bone scaffolds with a pore size gradient and a rectangular shape (biomimetically designed scaffolds or bone bricks). The effect of material composition is investigated considering poly-ε-caprolactone (PCL) as the main scaffold material, reinforced with ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (TCP) and bioglass at a concentration of 20 wt%. In the case of rectangular scaffolds, the effect of pore size (200 μm, 300 μm and 500 μm) is also investigated. The degradation process (accelerated degradation) was investigated during a period of 5 days in a sodium hydroxide (NaOH) medium. Degraded bone bricks and rectangular scaffolds were measured each day to evaluate the weight loss of the samples, which were also morphologically, thermally, chemically and mechanically assessed. The results show that the PCL/bioglass bone brick scaffolds exhibited faster degradation kinetics in comparison with the PCL, PCL/HA and PCL/TCP bone bricks. Furthermore, the degradation kinetics of rectangular scaffolds increased by increasing the pore size from 500 μm to 200 μm. The results also indicate that, for the same material composition, bone bricks degrade slower compared with rectangular scaffolds. The scanning electron microscopy (SEM) images show that the degradation process was faster on the external regions of the bone brick scaffolds (600 μm pore size) compared with the internal regions (200 μm pore size). The thermal gravimetric analysis (TGA) results show that the ceramic concentration remained constant throughout the degradation process, while differential scanning calorimetry (DSC) results show that all scaffolds exhibited a reduction in crystallinity (Xc), enthalpy (Δm) and melting temperature (Tm) throughout the degradation process, while the glass transition temperature (Tg) slightly increased. Finally, the compression results show that the mechanical properties decreased during the degradation process, with PCL/bioglass bone bricks and rectangular scaffolds presenting higher mechanical properties with the same design in comparison with the other materials.
AUTHOR Silvestri, Alessandro and Vázquez-Díaz, Silvia and Misia, Giuseppe and Poletti, Fabrizio and López-Domene, Rocío and Pavlov, Valeri and Zanardi, Chiara and Cortajarena, Aitziber L. and Prato, Maurizio
Title An Electroactive and Self-Assembling Bio-Ink, based on Protein-Stabilized Nanoclusters and Graphene, for the Manufacture of Fully Inkjet-Printed Paper-Based Analytical Devices [Abstract]
Year 2023
Journal/Proceedings Small
Reftype
DOI/URL DOI
Abstract
Abstract Hundreds of new electrochemical sensors are reported in literature every year. However, only a few of them makes it to the market. Manufacturability, or rather the lack of it, is the parameter that dictates if new sensing technologies will remain forever in the laboratory in which they are conceived. Inkjet printing is a low-cost and versatile technique that can facilitate the transfer of nanomaterial-based sensors to the market. Herein, an electroactive and self-assembling inkjet-printable ink based on protein-nanomaterial composites and exfoliated graphene is reported. The consensus tetratricopeptide proteins (CTPRs), used to formulate this ink, are engineered to template and coordinate electroactive metallic nanoclusters (NCs), and to self-assemble upon drying, forming stable films. The authors demonstrate that, by incorporating graphene in the ink formulation, it is possible to dramatically improve the electrocatalytic properties of the ink, obtaining an efficient hybrid material for hydrogen peroxide (H2O2) detection. Using this bio-ink, the authors manufactured disposable and environmentally sustainable electrochemical paper-based analytical devices (ePADs) to detect H2O2, outperforming commercial screen-printed platforms. Furthermore, it is demonstrated that oxidoreductase enzymes can be included in the formulation, to fully inkjet-print enzymatic amperometric biosensors ready to use.
AUTHOR Golafshan, Nasim and Castilho, Miguel and Daghrery, Arwa and Alehosseini, Morteza and van de Kemp, Tom and Krikonis, Konstantinos and de Ruijter, Mylene and Dal-Fabbro, Renan and Dolatshahi-Pirouz, Alireza and Bhaduri, Sarit B. and Bottino, Marco C. and Malda, Jos
Title Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interface
Year 2023
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
AUTHOR Nalesso, Paulo Roberto Lopes and Vedovatto, Matheus and Gregório, Julia Eduarda Schneider and Huang, Boyang and Vyas, Cian and Santamaria-Jr, Milton and Bártolo, Paulo and Caetano, Guilherme Ferreira
Title Early In Vivo Osteogenic and Inflammatory Response of 3D Printed Polycaprolactone/Carbon Nanotube/Hydroxyapatite/Tricalcium Phosphate Composite Scaffolds [Abstract]
Year 2023
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The development of advanced biomaterials and manufacturing processes to fabricate biologically and mechanically appropriate scaffolds for bone tissue is a significant challenge. Polycaprolactone (PCL) is a biocompatible and degradable polymer used in bone tissue engineering, but it lacks biofunctionalization. Bioceramics, such as hydroxyapatite (HA) and β tricalcium phosphate (β-TCP), which are similar chemically to native bone, can facilitate both osteointegration and osteoinduction whilst improving the biomechanics of a scaffold. Carbon nanotubes (CNTs) display exceptional electrical conductivity and mechanical properties. A major limitation is the understanding of how PCL-based scaffolds containing HA, TCP, and CNTs behave in vivo in a bone regeneration model. The objective of this study was to evaluate the use of three-dimensional (3D) printed PCL-based composite scaffolds containing CNTs, HA, and β-TCP during the initial osteogenic and inflammatory response phase in a critical bone defect rat model. Gene expression related to early osteogenesis, the inflammatory phase, and tissue formation was evaluated using quantitative real-time PCR (RT-qPCR). Tissue formation and mineralization were assessed by histomorphometry. The CNT+HA/TCP group presented higher expression of osteogenic genes after seven days. The CNT+HA and CNT+TCP groups stimulated higher gene expression for tissue formation and mineralization, and pro- and anti-inflammatory genes after 14 and 30 days. Moreover, the CNT+TCP and CNT+HA/TCP groups showed higher gene expressions related to M1 macrophages. The association of CNTs with ceramics at 10wt% (CNT+HA/TCP) showed lower expressions of inflammatory genes and higher osteogenic, presenting a positive impact and balanced cell signaling for early bone formation. The association of CNTs with both ceramics promoted a minor inflammatory response and faster bone tissue formation.
AUTHOR Marin, Maria Minodora and Gifu, Ioana Catalina and Pircalabioru, Gratiela Gradisteanu and Albu Kaya, Madalina and Constantinescu, Rodica Roxana and Alexa, Rebeca Leu and Trica, Bogdan and Alexandrescu, Elvira and Nistor, Cristina Lavinia and Petcu, Cristian and Ianchis, Raluca
Title Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing [Abstract]
Year 2023
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide’s polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
AUTHOR Pan, Yiwen and Chen, Shaoqing and Meng, Yanyan and He, Mu and Liu, Chun and Wang, Cheli and Ni, Xinye
Title Study on 3D-Printed Emodin/Nano-Hydroxyapatite Scaffolds Promoting Bone Regeneration by Supporting Osteoblast Proliferation and Macrophage M2 Polarization [Abstract]
Year 2023
Journal/Proceedings ACS Appl. Polym. Mater.
Reftype
DOI/URL DOI
Abstract
The treatment of bone defects caused by diseases, trauma, or tumor has always been a great clinical challenge. Implantation of bone biomaterials into bone defect areas is an effective method for bone injury repair. In this study, we used three-dimensional (3D) printing technology to prepare nano-hydroxyapatite (nHA)/sodium alginate (SA)/gelatin (Gel) hydrogel scaffolds loaded with different ratios (0, 0.13, 0.26, 0.39, 0.53, and 0.79‰) of emodin (EM) (EM/nHA/SA/Gel). Scanning electron microscopy showed that the scaffolds had a smooth surface without fracture and nHA was evenly distributed on the surface. The cell proliferation and migration results showed that the 0.39‰ EM group, in particular, could significantly promote the proliferation and migration of mouse embryonic osteoblast precursor (MC3T3-E1) cells and significantly increase the mRNA expression of osteogenic differentiation-related genes (bone morphogenetic protein/BMP-2, BMP-9, osteocalcin). In addition, the 0.39‰ EM group exhibited the best effect on osteogenic differentiation-related proteins (alkaline phosphatase, Runx 2, OSX). The expression of M2 polarization-related genes (arginase-1, CD206) also significantly increased after the treatment with the 0.39‰ EM group. Micro-CT showed that in the rat skull defect model, the EM/nHA/SA/Gel scaffold group significantly promoted bone regeneration after being implanted into the skull for 30 days. Our results indicate that the EM/nHA/SA/Gel hydrogel scaffolds can not only directly promote the proliferation and differentiation of osteoblasts but also indirectly promote osteogenic differentiation by supporting M2 polarization of macrophages. EM/nHA/SA/Gel hydrogel scaffolds are potential bone tissue engineering materials for bone regeneration.
AUTHOR Leu Alexa, Rebeca and Cucuruz, Andreia and Ghițulică, Cristina-Daniela and Voicu, Georgeta and Stamat (Balahura), Liliana-Roxana and Dinescu, Sorina and Vlasceanu, George Mihail and Stavarache, Cristina and Ianchis, Raluca and Iovu, Horia and Costache, Marieta
Title 3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration [Abstract]
Year 2022
Journal/Proceedings International Journal of Molecular Sciences
Reftype
DOI/URL URL DOI
Abstract
The main objective was to produce 3D printable hydrogels based on GelMA and hydroxyapatite doped with cerium ions with potential application in bone regeneration. The first part of the study regards the substitution of Ca2+ ions from hydroxyapatite structure with cerium ions (Ca10-xCex(PO4)6(OH)2, xCe = 0.1, 0.3, 0.5). The second part followed the selection of the optimal concentration of HAp doped, which will ensure GelMA-based scaffolds with good biocompatibility, viability and cell proliferation. The third part aimed to select the optimal concentrations of GelMA for the 3D printing process (20%, 30% and 35%). In vitro biological assessment presented the highest level of cell viability and proliferation potency of GelMA-HC5 composites, along with a low cytotoxic potential, highlighting the beneficial effects of cerium on cell growth, also supported by Live/Dead results. According to the 3D printing experiments, the 30% GelMA enriched with HC5 was able to generate 3D scaffolds with high structural integrity and homogeneity, showing the highest suitability for the 3D printing process. The osteogenic differentiation experiments confirmed the ability of 30% GelMA-3% HC5 scaffold to support and efficiently maintain the osteogenesis process. Based on the results, 30% GelMA-3% HC5 3D printed scaffolds could be considered as biomaterials with suitable characteristics for application in bone tissue engineering.
AUTHOR Katcharava, Zviadi and Marinow, Anja and Bhandary, Rajesh and Binder, Wolfgang H.
Title 3D Printable Composite Polymer Electrolytes: Influence of SiO2 Nanoparticles on 3D-Printability [Abstract]
Year 2022
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
We here demonstrate the preparation of composite polymer electrolytes (CPEs) for Li-ion batteries, applicable for 3D printing process via fused deposition modeling. The prepared composites consist of modified poly(ethylene glycol) (PEG), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and SiO2-based nanofillers. PEG was successfully end group modified yielding telechelic PEG containing either ureidopyrimidone (UPy) or barbiturate moieties, capable to form supramolecular networks via hydrogen bonds, thus introducing self-healing to the electrolyte system. Silica nanoparticles (NPs) were used as a filler for further adjustment of mechanical properties of the electrolyte to enable 3D-printability. The surface functionalization of the NPs with either ionic liquid (IL) or hydrophobic alkyl chains is expected to lead to an improved dispersion of the NPs within the polymer matrix. Composites with different content of NPs (5%, 10%, 15%) and LiTFSI salt (EO/Li+ = 5, 10, 20) were analyzed via rheology for a better understanding of 3D printability, and via Broadband Dielectric Spectroscopy (BDS) for checking their ionic conductivity. The composite electrolyte PEG 1500 UPy2/LiTFSI (EO:Li 5:1) mixed with 15% NP-IL was successfully 3D printed, revealing its suitability for application as printable composite electrolytes.
AUTHOR Qin, Wen and Li, Chenkai and Liu, Chun and Wu, Siyu and Liu, Jun and Ma, Jiayi and Chen, Wenyang and Zhao, Hongbin and Zhao, Xiubo
Title 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration [Abstract]
Year 2022
Journal/Proceedings Journal of Biomaterials Applications
Reftype
DOI/URL DOI
Abstract
Tissue-engineered bone material is one of the effective methods to repair bone defects, but the application is restricted in clinical because of the lack of excellent scaffolds that can induce bone regeneration as well as the difficulty in making scaffolds with personalized structures. 3D printing is an emerging technology that can fabricate bespoke 3D scaffolds with precise structure. However, it is challenging to develop the scaffold materials with excellent printability, osteogenesis ability, and mechanical strength. In this study, graphene oxide (GO), attapulgite (ATP), type I collagen (Col I) and polyvinyl alcohol were used as raw materials to prepare composite scaffolds via 3D bioprinting. The composite materials showed excellent printability. The microcosmic architecture and properties was characterized by scanning electron microscopy, Fourier transform infrared and thermal gravimetric analyzer, respectively. To verify the biocompatibility of the scaffolds, the viability, proliferation and osteogenic differentiation of Bone Marrow Stromal Cells (BMSCs) on the scaffolds were assessed by CCK-8, Live/Dead staining and Real-time PCR in vitro. The composited scaffolds were then implanted into the skull defects on rat for bone regeneration. Hematoxylin-eosin staining, Masson staining and immunohistochemistry staining were carried out in vivo to evaluate the regeneration of bone tissue.The results showed that GO/ATP/COL scaffolds have been demonstrated to possess controlled porosity, water absorption, biodegradability and good apatite-mineralization ability. The scaffold consisting of 0.5% GO/ATP/COL have excellent biocompatibility and was able to promote the growth, proliferation and osteogenic differentiation of mouse BMSCs in vitro. Furthermore, the 0.5% GO/ATP/COL scaffolds were also able to promote bone regeneration of in rat skull defects. Our results illustrated that the 3D printed GO/ATP/COL composite scaffolds have good mechanical properties, excellent cytocompatibility for enhanced mouse BMSCs adhesion, proliferation, and osteogenic differentiation. All these advantages made it potential as a promising biomaterial for osteogenic reconstruction.
AUTHOR Jonhson, Win and Xu, Xi and Bian, Ka and Xun, Yanran and Tan, Yong Hao and Chen, Zhe and Zhang, Danwei and Ding, Jun
Title 3D-Printed Hierarchical Ceramic Architectures for Ultrafast Emulsion Treatment and Simultaneous Oil-Water Filtration [Abstract]
Year 2022
Journal/Proceedings ACS Materials Lett.
Reftype
DOI/URL DOI
Abstract
There is a critical need for energy-efficient water treatment processes as the world seeks to limit global warming below 1.5 °C. Gravity-driven mesh filtration presents a sustainable solution to treating oily wastewater and emulsions, which are byproducts of many human activities. The promise of a green alternative is getting closer with the development of 3D printing combined with reusable, recyclable, and ubiquitous materials such as silica to produce durable and recyclable filters with controllable mesh spacing. In this work, several filters were fabricated to separate oily water mixtures with a separation efficiency of 99% at high flow flux by coating 3D porous ceramic architectures with organosilanes. The proposed ceramic filters can also treat oil-in-water and water-in-oil surfactant-stabilized emulsions with high flow flux. This strategy to functionalize the 3D printed silica surface to form either hydrophobic or hydrophilic surfaces can open a new possibility for gravity-driven simultaneous oil-water separation. The first gravity-driven hierarchical auto-oil-water separator (HAOS) was introduced to separate an oily water mixture into two different containers using a combination of 3D printed hierarchical hydrophilic and hydrophobic filters without an additional postseparation step.
AUTHOR Liu, Guangde and Yu, Rongrong and Liu, Dong and Xia, Yuanhua and Pei, Xiaoyuan and Wang, Wei and Min, Chunying and Liu, Shengkai and Shao, Ruiqi and Xu, Zhiwei
Title 3D-printed TiO2-Ti3C2Tx heterojunction/rGO/PDMS composites with gradient pore size for electromagnetic interference shielding and thermal management [Abstract]
Year 2022
Journal/Proceedings Composites Part A: Applied Science and Manufacturing
Reftype
DOI/URL URL DOI
Abstract
In this paper, the Ti3C2Tx/GO frame with vertical pore gradient is constructed by using 3D printing technology. The TiO2-Ti3C2Tx heterojunctions is generated in situ by thermal annealing to control the oxidation of 3D frames. TiO2-Ti3C2Tx/rGO/PDMS composites with high EMI SE and excellent thermal management performance are assembled by curing the annealed 3D frame with polydimethylsiloxane (PDMS). Notably, the composites have a unique multilayer-scale structure that rod-shaped TiO2 particles are decorated on Ti3C2Tx substrate and TiO2-Ti3C2Tx/rGO stack to form an amorphous porous gradient pore size structure. The effect of gradient pore size on EMI SE of composites is studied by simulation. Under the synergistic effect of multiple loss mechanism, the designed composites show conductivity of up to 173.1 S/m, the thickness of the composite is 2 mm and the density is 67mg/cm3, which shows excellent EMI SE of 58 dB. The composites also have excellent thermal management performance.
AUTHOR Mao, Qiuyi and Zhu, Bowen and Zhuang, Hai and Bu, Shoushan
Title 3D-Printing Assisted SF-SA Based MgP Hybrid Hydrogel Scaffold for Bone Tissue Engineering [Abstract]
Year 2022
Journal/Proceedings Frontiers in Materials
Reftype
DOI/URL DOI
Abstract
A new prototype of hybrid silk fibroin and sodium alginate (SF-SA) based osteogenic hydrogel scaffold with a concentration of 2.5% magnesium phosphate (MgP) based gel was prepared with the assistance of an extrusion-based three-dimensional (3D) printing machine in this study. To determine the optimum ratio of MgP-based gel in the hydrogel, a series of physical and biochemical experiments were performed to determine the proper concentration of MgP in two-dimensional hydrogel films, as well as the cell compatibility with these materials in sequence. The SF-SA hydrogel with 2.5wt% magnesium phosphate (SF-SA/MgP) stood out and then was used to fabricate 3D hydrogel scaffolds according to the consequences of the experiments, with SF-SA hydrogel as a control. Then the morphology and osteogenic activity of the scaffolds were further characterized by field emission scanning electron microscope (SEM), calcium mineralization staining, and reverse transcription-polymerase chain reaction (rt-PCR). The SF-SA/MgP hydrogel scaffold promoted the adhesion of rat mesenchymal stem cells with higher degrees of efficiency under dynamic culture conditions. After co-culturing in an osteogenic differentiation medium, cells seeded on SF-SA/MgP hydrogel scaffold were shown to have better performance on osteogenesis in the early stage than the control group. This work illustrates that the 3D structures of hybrid SF-SA/MgP hydrogel are promising headstones for osteogenic tissue engineering.
AUTHOR Wang, Shuo and Shi, Haiting and Xia, Yuanhua and Liu, Dong and Min, Chunying and Zeng, Ming and Liang, Sirui and Shao, Ruiqi and Wu, Xiaoqing and Xu, Zhiwei
Title A 3D-printed framework with a gradient distributed heterojunction and fast Li+ conductivity interfaces for high-rate lithium metal anodes [Abstract]
Year 2022
Journal/Proceedings J. Mater. Chem. A
Reftype
DOI/URL DOI
Abstract
A bottleneck limiting the practical application of lithium metal anodes is the uncontrolled growth of lithium dendrites caused by gradient distributed Li+ from separators to collectors. Herein{,} 3D-printed frameworks with a gradient distributed heterojunction and fast Li+ conductivity interfaces are developed to regulate the Li+ distribution and the direction of dendrite growth. More importantly{,} the effect of different Li+ concentration gradient frameworks on Li+ deposition behavior was analyzed in detail. Synchrotron X-ray tomography demonstrates that macropores dominate the framework{,} which effectively suppresses the volume change caused by lithium deposition. DFT calculations confirm the high lithiophilicity of γ-Al2O3 and the graphene heterojunction. Synchrotron radiation-based soft X-ray absorption spectroscopy illustrates the fast Li+ conductivity Li–Al–O interface resulting from the shortened Al–O bond distance. Benefiting from the higher Li+ concentration differences during the dissolution process and Li–Al–O interfaces{,} the gradient framework can achieve a high rate performance of ∼40 mV overpotential at 10 mA cm−2 and long cycle stability of ∼1500 h at 1 mA cm−2.
AUTHOR Daskalakis, Evangelos and Huang, Boyang and Vyas, Cian and Acar, Anil A. and Liu, Fengyuan and Fallah, Ali and Cooper, Glen and Weightman, Andrew and Blunn, Gordon and Koç, Bahattin and Bartolo, Paulo
Title Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds [Abstract]
Year 2022
Journal/Proceedings ACS Omega
Reftype
DOI/URL DOI
Abstract
Large bone loss injuries require high-performance scaffolds with an architecture and material composition resembling native bone. However, most bone scaffold studies focus on three-dimensional (3D) structures with simple rectangular or circular geometries and uniform pores, not able to recapitulate the geometric characteristics of the native tissue. This paper addresses this limitation by proposing novel anatomically designed scaffolds (bone bricks) with nonuniform pore dimensions (pore size gradients) designed based on new lay-dawn pattern strategies. The gradient design allows one to tailor the properties of the bricks and together with the incorporation of ceramic materials allows one to obtain structures with high mechanical properties (higher than reported in the literature for the same material composition) and improved biological characteristics.
AUTHOR Cao, Chuanliang and Huang, Pengren and Prasopthum, Aruna and Parsons, Andrew J. and Ai, Fanrong and Yang, Jing
Title Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations [Abstract]
Year 2022
Journal/Proceedings Biomater. Sci.
Reftype
DOI/URL DOI
Abstract
3D printed bioactive glass or bioceramic particle reinforced composite scaffolds for bone tissue engineering currently suffer from low particle concentration (100% breaking strain) by adding poly(ethylene glycol) which is biocompatible and FDA approved. The scaffolds require no post-printing washing to remove hazardous components. More exposure of HA microparticles on strut surfaces is enabled by incorporating higher HA concentrations. Compared to scaffolds with 72 wt% HA{,} scaffolds with higher HA content (90 wt%) enhance matrix formation but not new bone volume after 12 weeks implantation in rat calvarial defects. Histological analyses demonstrate that bone regeneration within the 3D printed scaffolds is via intramembranous ossification and starts in the central region of pores. Fibrous tissue that resembles non-union tissue within bone fractures is formed within pores that do not have new bone. The amount of blood vessels is similar between scaffolds with mainly fibrous tissue and those with more bone tissue{,} suggesting vascularization is not a deciding factor for determining the type of tissues regenerated within the pores of 3D printed scaffolds. Multinucleated immune cells are commonly present in all scaffolds surrounding the struts{,} suggesting a role of managing inflammation in bone regeneration within 3D printed scaffolds.
AUTHOR Yan Li and Lijing Huang and Guangpin Tai and Feifei Yan and Lin Cai and Chenxing Xin and Shamoon {Al Islam}
Title Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment [Abstract]
Year 2022
Journal/Proceedings Composites Part A: Applied Science and Manufacturing
Reftype
DOI/URL URL DOI
Abstract
The treatment of tumour-related bone defects should ideally combine bone regeneration with tumour treatment. Additive manufacturing (AM) could feasibly place functional bone-repair materials within composite materials with functional-grade structures, giving them bone repair and anti-tumour effects. Magnetothermal therapy is a promising non-invasive method of tumour treatment that has attracted increasing attention. In this study, we prepared novel hydrogel composite scaffolds of polyvinyl alcohol/sodium alginate/hydroxyapatite (PVA/SA/HA) at low temperature via AM. The scaffolds were loaded with various concentrations of magnetic graphene oxide (MGO) @Fe3O4 nanoparticles. The scaffolds were characterised by fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA), which showed that the scaffolds have good moulding qualities and strong hydrogen bonding between the MGO/PVA/SA/HA components. TGA analysis demonstrated the expected thermal stability of the MGO and scaffolds. Thermal effects can be adjusted by varying the contents of MGO and the strength of an external alternating magnetic field. The prepared MGO hydrogel composite scaffolds enhance biological functions and support bone mesenchymal stem cell differentiation in vitro. The scaffolds also show favourable anti-tumour characteristics with effective magnetothermal conversion in vivo.
AUTHOR Nadernezhad, Ali and Groll, Jürgen
Title Machine Learning Reveals a General Understanding of Printability in Formulations Based on Rheology Additives [Abstract]
Year 2022
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Hydrogel ink formulations based on rheology additives are becoming increasingly popular as they enable 3-dimensional (3D) printing of non-printable but biologically relevant materials. Despite the widespread use, a generalized understanding of how these hydrogel formulations become printable is still missing, mainly due to their variety and diversity. Employing an interpretable machine learning approach allows the authors to explain the process of rendering printability through bulk rheological indices, with no bias toward the composition of formulations and the type of rheology additives. Based on an extensive library of rheological data and printability scores for 180 different formulations, 13 critical rheological measures that describe the printability of hydrogel formulations, are identified. Using advanced statistical methods, it is demonstrated that even though unique criteria to predict printability on a global scale are highly unlikely, the accretive and collaborative nature of rheological measures provides a qualitative and physically interpretable guideline for designing new printable materials.
AUTHOR Paterson, T. E. and Hagis, N. and Boufidis, D. and Wang, Q. and Moore, S. R. and da Silva, A. C. and Mitchell, R. L. and Alix, J. J. P. and Minev, I. R.
Title Monitoring of hand function enabled by low complexity sensors printed on textile [Abstract]
Year 2022
Journal/Proceedings Flexible and Printed Electronics
Reftype
DOI/URL DOI
Abstract
Development of inexpensive, disposable, use-at-home, personalised health wearables can revolutionise clinical trial design and clinical care. Recent approaches have focused on electronic skins, which are complex systems of sensors and wiring produced by integration of multiple materials and layers. The requirement for high-end clean room microfabrication techniques create challenges for the development of such devices. Drawing inspiration from the ancient art of henna tattoos, where an artist draws designs directly on the hand by extruding a decorative ink, we developed a simple strategy for direct writing (3D printing) of bioelectronic sensors on textile. The sensors are realised using a very limited set of low-cost inks composed only of graphite flakes and silicone. By adapting sensor architectures in two dimensions, we produced electromyography (EMG), strain and pressure sensors. The sensors are printed directly onto stretchable textile (cotton) gloves and function as an integrated multimodal monitoring system for hand function. Gloves demonstrated functionality and stability by recording simultaneous readings of pinch strength, thumb movement (flexion) and EMG of the abductor pollicis brevis muscle over 5 days of daily recordings. Our approach is targeted towards a home based monitoring of hand function, with potential applications across a range of neurological and musculoskeletal conditions.
AUTHOR Eichholz, Kian and Freeman, Fiona and Pitacco, Pierluca and Nulty, Jessica and Ahern, Daniel and Burdis, Ross and Browe, David and Garcia, Orquidea and Hoey, David and Kelly, Daniel John
Title Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Emerging 3D printing technologies can provide exquisite control over the external shape and internal architecture of scaffolds and tissue engineered constructs, enabling systematic studies to explore how geometric design features influence the regenerative process. Here we used fused deposition modelling (FDM) and melt electrowriting (MEW) to investigate how scaffold microarchitecture influences the healing of large bone defects. FDM was used to fabricate scaffolds with relatively large fibre diameters and low porosities, while MEW was used to fabricate scaffolds with smaller fibre diameters and higher porosities, with both scaffolds being designed to have comparable surface areas. Scaffold microarchitecture significantly influenced the healing response following implantation into critically sized femoral defects in rats, with the FDM scaffolds supporting the formation of larger bone spicules through its pores, while the MEW scaffolds supported the formation of a more round bone front during healing. After 12 weeks in vivo, both MEW and FDM scaffolds supported significantly higher levels of defect vascularisation compared to empty controls, while the MEW scaffolds supported higher levels of new bone formation. Somewhat surprisingly, this superior healing in the MEW group did not correlate with higher levels of angiogenesis, with the FDM scaffold supporting greater total vessel formation and the formation of larger vessels, while the MEW scaffold promoted the formation of a dense microvasculature with minimal evidence of larger vessels infiltrating the defect region. To conclude, the small fibre diameter, high porosity and high specific surface area of the MEW scaffold proved beneficial for osteogenesis and bone regeneration, demonstrating that changes in scaffold architecture enabled by this additive manufacturing technique can dramatically modulate angiogenesis and tissue regeneration without the need for complex exogenous growth factors. These results provide a valuable insight into the importance of 3D printed scaffold architecture when developing new bone tissue engineering strategies.
AUTHOR Ma, Jiayi and Wu, Siyu and Liu, Jun and Liu, Chun and Ni, Su and Dai, Ting and Wu, Xiaoyu and Zhang, Zhenyu and Qu, Jixin and Zhao, Hongbin and Zhou, Dong and Zhao, Xiubo
Title Synergistic effects of nanoattapulgite and hydroxyapatite on vascularization and bone formation in a rabbit tibia bone defect model [Abstract]
Year 2022
Journal/Proceedings Biomater. Sci.
Reftype
DOI/URL DOI
Abstract
Hydroxyapatite (HA) is a promising scaffold material for the treatment of bone defects. However{,} the lack of angiogenic properties and undesirable mechanical properties (such as fragility) limits the application of HA. Nanoattapulgite (ATP) is a nature-derived clay mineral and has been proven to be a promising bioactive material for bone regeneration due to its ability to induce osteogenesis. In this study{,} polyvinyl alcohol/collagen/ATP/HA (PVA/COL/ATP/HA) scaffolds were printed. Mouse bone marrow mesenchymal stem/stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) were used in vitro to assess the biocompatibility and the osteogenesis and vascularization induction potentials of the scaffolds. Subsequently{,} in vivo micro-CT and histological staining were carried out to evaluate new bone formation in a rabbit tibial defect model. The in vitro results showed that the incorporation of ATP increased the printing fidelity and mechanical properties{,} with values of compressive strengths up to 200% over raw PC-H scaffolds. Simultaneously{,} the expression levels of osteogenic-related genes and vascularization-related genes were significantly increased after the incorporation of ATP. The in vivo results showed that the PVA/COL/ATP/HA scaffolds exhibited synergistic effects on promoting vascularization and bone formation. The combination of ATP and HA provides a promising strategy for vascularized bone tissue engineering.
AUTHOR Demirörs, Ahmet F. and Poloni, Erik and Chiesa, Maddalena and Bargardi, Fabio L. and Binelli, Marco R. and Woigk, Wilhelm and de Castro, Lucas D. C. and Kleger, Nicole and Coulter, Fergal B. and Sicher, Alba and Galinski, Henning and Scheffold, Frank and Studart, André R.
Title Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color [Abstract]
Year 2022
Journal/Proceedings Nature Communications
Reftype Demirörs2022
DOI/URL DOI
Abstract
Structural color is frequently exploited by living organisms for biological functions and has also been translated into synthetic materials as a more durable and less hazardous alternative to conventional pigments. Additive manufacturing approaches were recently exploited for the fabrication of exquisite photonic objects, but the angle-dependence observed limits a broader application of structural color in synthetic systems. Here, we propose a manufacturing platform for the 3D printing of complex-shaped objects that display isotropic structural color generated from photonic colloidal glasses. Structurally colored objects are printed from aqueous colloidal inks containing monodisperse silica particles, carbon black, and a gel-forming copolymer. Rheology and Small-Angle-X-Ray-Scattering measurements are performed to identify the processing conditions leading to printed objects with tunable structural colors. Multimaterial printing is eventually used to create complex-shaped objects with multiple structural colors using silica and carbon as abundant and sustainable building blocks.
AUTHOR Soleymani Eil Bakhtiari, Sanaz and Bakhsheshi-Rad, Hamid Reza and Karbasi, Saeed and Razzaghi, Mahmood and Tavakoli, Mohamadreza and Ismail, Ahmad Fauzi and Sharif, Safian and RamaKrishna, Seeram and Chen, Xiongbiao and Berto, Filippo
Title 3-Dimensional Printing of Hydrogel-Based Nanocomposites: A Comprehensive Review on the Technology Description, Properties, and Applications [Abstract]
Year 2021
Journal/Proceedings Advanced Engineering Materials
Reftype
DOI/URL DOI
Abstract
Increasing demand for customized implants and tissue scaffolds requires advanced biomaterials and fabricating processes for fabricating three-dimensional (3D) structures that resemble the complexity of the extracellular matrix (ECM). Lately, biofabrication approaches such as cell-laden (soft) hydrogel 3D printing (3DP) have been of increasing interest in the development of 3D functional environments similar to natural tissues and organs. Hydrogels that resemble biological ECMs can provide mechanical support and signaling cues to cells to control their behavior. Although the capability of hydrogels to produce artificial ECMs can regulate cellular behavior, one of the major drawbacks of working with hydrogels is their inferior mechanical properties. Therefore, keeping and enhancing the mechanical integrity of fabricated scaffolds has become an essential matter for 3D hydrogel structures. Herein, 3D-printed hydrogel-based nanocomposites (NCs) are evaluated systematically in terms of introducing novel techniques for 3DP of hydrogel-based materials, properties, and biomedical applications.
AUTHOR Rößler, Sina and Brückner, Andreas and Kruppke, Iris and Wiesmann, Hans-Peter and Hanke, Thomas and Kruppke, Benjamin
Title 3D Plotting of Silica/Collagen Xerogel Granules in an Alginate Matrix for Tissue-Engineered Bone Implants [Abstract]
Year 2021
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Today, materials designed for bone regeneration are requested to be degradable and resorbable, bioactive, porous, and osteoconductive, as well as to be an active player in the bone-remodeling process. Multiphasic silica/collagen Xerogels were shown, earlier, to meet these requirements. The aim of the present study was to use these excellent material properties of silica/collagen Xerogels and to process them by additive manufacturing, in this case 3D plotting, to generate implants matching patient specific shapes of fractures or lesions. The concept is to have Xerogel granules as active major components embedded, to a large proportion, in a matrix that binds the granules in the scaffold. By using viscoelastic alginate as matrix, pastes of Xerogel granules were processed via 3D plotting. Moreover, alginate concentration was shown to be the key to a high content of irregularly shaped Xerogel granules embedded in a minimum of matrix phase. Both the alginate matrix and Xerogel granules were also shown to influence viscoelastic behavior of the paste, as well as the dimensionally stability of the scaffolds. In conclusion, 3D plotting of Xerogel granules was successfully established by using viscoelastic properties of alginate as matrix phase.
AUTHOR Yuanhao Wu and Gabriele Maria Fortunato and Babatunde O Okesola and Francesco Luigi Pellerej di Brocchetti and Ratima Suntornnond and John Connelly and Carmelo De Maria and Jose Carlos Rodriguez-Cabello and Giovanni Vozzi and Wen Wang and Alvaro Mata
Title An interfacial self-assembling bioink for the manufacturing of capillary-like structures with tuneable and anisotropic permeability [Abstract]
Year 2021
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Self-assembling bioinks offer the possibility to biofabricate with molecular precision, hierarchical control, and biofunctionality. For this to become a reality with widespread impact, it is essential to engineer these ink systems ensuring reproducibility and providing suitable standardization. We have reported a self-assembling bioink based on disorder-to-order transitions of an elastin-like recombinamer (ELR) to co-assemble with graphene oxide (GO). Here, we establish reproducible processes, optimize printing parameters for its use as a bioink, describe new advantages that the self-assembling bioink can provide, and demonstrate how to fabricate novel structures with physiological relevance. We fabricate capillary-like structures with resolutions down to ∼10 µm in diameter and ∼2 µm thick tube walls and use both experimental and finite element analysis to characterize the printing conditions, underlying interfacial diffusion-reaction mechanism of assembly, printing fidelity, and material porosity and permeability. We demonstrate the capacity to modulate the pore size and tune the permeability of the resulting structures with and without human umbilical vascular endothelial cells. Finally, the potential of the ELR-GO bioink to enable supramolecular fabrication of biomimetic structures was demonstrated by printing tubes exhibiting walls with progressively different structure and permeability.
AUTHOR Silvestri, Alessandro and Criado, Alejandro and Poletti, Fabrizio and Wang, Faxing and Fanjul-Bolado, Pablo and González-García, María B. and García-Astrain, Clara and Liz-Marzán, Luis M. and Feng, Xinliang and Zanardi, Chiara and Prato, Maurizio
Title Bioresponsive, Electroactive, and Inkjet-Printable Graphene-Based Inks [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract With the advent of flexible electronics, the old fashioned and conventional solid-state technology will be replaced by conductive inks combined with low-cost printing techniques. Graphene is an ideal candidate to produce conductive inks, due to its excellent conductivity and zero bandgap. The possibility to chemically modify graphene with active molecules opens up the field of responsive conductive inks. Herein, a bioresponsive, electroactive, and inkjet-printable graphene ink is presented. The ink is based on graphene chemically modified with selected enzymes and an electrochemical mediator, to transduce the products of the enzymatic reaction into an electron flow, proportional to the analyte concentration. A water-based formulation is engineered to be respectful with the enzymatic activity while matching the stringent requirements of inkjet printing. The efficient electrochemical performance of the ink, as well as a proof-of-concept application in biosensing, is demonstrated. The versatility of the system is demonstrated by modifying graphene with various oxidoreductases, obtaining inks with selectivity toward glucose, lactate, methanol, and ethanol.
AUTHOR Petretta, Mauro and Gambardella, Alessandro and Boi, Marco and Berni, Matteo and Cavallo, Carola and Marchiori, Gregorio and Maltarello, Maria Cristina and Bellucci, Devis and Fini, Milena and Baldini, Nicola and Grigolo, Brunella and Cannillo, Valeria
Title Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses [Abstract]
Year 2021
Journal/Proceedings Biology
Reftype
DOI/URL DOI
Abstract
Polycaprolactone (PCL) is widely used in additive manufacturing for the construction of scaffolds for tissue engineering because of its good bioresorbability, biocompatibility, and processability. Nevertheless, its use is limited by its inadequate mechanical support, slow degradation rate and the lack of bioactivity and ability to induce cell adhesion and, thus, bone tissue regeneration. In this study, we fabricated 3D PCL scaffolds reinforced with a novel Mg-doped bioactive glass (Mg-BG) characterized by good mechanical properties and biological reactivity. An optimization of the printing parameters and scaffold fabrication was performed; furthermore, an extensive microtopography characterization by scanning electron microscopy and atomic force microscopy was carried out. Nano-indentation tests accounted for the mechanical properties of the scaffolds, whereas SBF tests and cytotoxicity tests using human bone-marrow-derived mesenchymal stem cells (BM-MSCs) were performed to evaluate the bioactivity and in vitro viability. Our results showed that a 50/50 wt% of the polymer-to-glass ratio provides scaffolds with a dense and homogeneous distribution of Mg-BG particles at the surface and roughness twice that of pure PCL scaffolds. Compared to pure PCL (hardness H = 35 ± 2 MPa and Young’s elastic modulus E = 0.80 ± 0.05 GPa), the 50/50 wt% formulation showed H = 52 ± 11 MPa and E = 2.0 ± 0.2 GPa, hence, it was close to those of trabecular bone. The high level of biocompatibility, bioactivity, and cell adhesion encourages the use of the composite PCL/Mg-BG scaffolds in promoting cell viability and supporting mechanical loading in the host trabecular bone.
AUTHOR Chen, Shengyang and Shi, Qian and Jang, Taesik and Ibrahim, Mohammed Shahrudin Bin and Deng, Jingyu and Ferracci, Gaia and Tan, Wen See and Cho, Nam-Joon and Song, Juha
Title Engineering Natural Pollen Grains as Multifunctional 3D Printing Materials [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract The development of multifunctional 3D printing materials from sustainable natural resources is a high priority in additive manufacturing. Using an eco-friendly method to transform hard pollen grains into stimulus-responsive microgel particles, we engineered a pollen-derived microgel suspension that can serve as a functional reinforcement for composite hydrogel inks and as a supporting matrix for versatile freeform 3D printing systems. The pollen microgel particles enabled the printing of composite inks and improved the mechanical and physiological stabilities of alginate and hyaluronic acid hydrogel scaffolds for 3D cell culture applications. Moreover, the particles endowed the inks with stimulus-responsive controlled release properties. The suitability of the pollen microgel suspension as a supporting matrix for freeform 3D printing of alginate and silicone rubber inks was demonstrated and optimized by tuning the rheological properties of the microgel. Compared with other classes of natural materials, pollen grains have several compelling features, including natural abundance, renewability, affordability, processing ease, monodispersity, and tunable rheological features, which make them attractive candidates to engineer advanced materials for 3D printing applications.
AUTHOR Wibowo, Arie and Tajalla, Gusti U. N. and Marsudi, Maradhana A. and Cooper, Glen and Asri, Lia A.T.W. and Liu, Fengyuan and Ardy, Husaini and Bartolo, Paulo J.D.S.
Title Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes (Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds [Abstract]
Year 2021
Journal/Proceedings Molecules
Reftype
DOI/URL URL DOI
Abstract
Electroactive biomaterials are fascinating for tissue engineering applications because of their ability to deliver electrical stimulation directly to cells, tissue, and organs. One particularly attractive conductive filler for electroactive biomaterials is silver nanoparticles (AgNPs) because of their high conductivity, antibacterial activity, and ability to promote bone healing. However, production of AgNPs involves a toxic reducing agent which would inhibit biological scaffold performance. This work explores facile and green synthesis of AgNPs using extract of Cilembu sweet potato and studies the effect of baking and precursor concentrations (1, 10 and 100 mM) on AgNPs’ properties. Transmission electron microscope (TEM) results revealed that the smallest particle size of AgNPs (9.95 ± 3.69 nm) with nodular morphology was obtained by utilization of baked extract and ten mM AgNO3. Polycaprolactone (PCL)/AgNPs scaffolds exhibited several enhancements compared to PCL scaffolds. Compressive strength was six times greater (3.88 ± 0.42 MPa), more hydrophilic (contact angle of 76.8 ± 1.7°), conductive (2.3 ± 0.5 × 10−3 S/cm) and exhibited anti-bacterial properties against Staphylococcus aureus ATCC3658 (99.5% reduction of surviving bacteria). Despite the promising results, further investigation on biological assessment is required to obtain comprehensive study of this scaffold. This green synthesis approach together with the use of 3D printing opens a new route to manufacture AgNPs-based electroactive with improved anti-bacterial properties without utilization of any toxic organic solvents.
AUTHOR Paulo Roberto {Lopes Nalesso} and Weiguang Wang and Yanhao Hou and Leonardo Bagne and Amanda Tavares Pereira and Julia Venturini Helaehil and Thiago Antônio {Moretti de Andrade} and Gabriela Bortolança Chiarotto and Paulo Bártolo and Guilherme Ferreira Caetano
Title In vivo investigation of 3D printed polycaprolactone/graphene electro-active bone scaffolds [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Additive manufactured scaffolds are widely used as 3D support structures for tissue engineering. This paper investigates the mechanisms behind bone regeneration due to the combined use of 3D printed poly (ϵ-caprolactone)/graphene (PCL/G) electro-active scaffolds and electrical stimulation. A comprehensive in vivo study was conducted to assess the proposed approach, using a rat model. Results show that the combined use of electro-active scaffolds and electrical stimulation therapy accelerates the bone regeneration process and the formation of more organized new bone, through fast angiogenesis, and a rapid transition to the mineralization and bone remodelling phase. The mechanism is investigated and explained.
AUTHOR e Silva, Edney P. and Huang, Boyang and Helaehil, Júlia V. and Nalesso, Paulo R. L. and Bagne, Leonardo and de Oliveira, Maraiara A. and Albiazetti, Gabriela C. C. and Aldalbahi, Ali and El-Newehy, Mohamed and Santamaria-Jr, Milton and Mendonça, Fernanda A. S. and Bártolo, Paulo and Caetano, Guilherme F.
Title In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering [Abstract]
Year 2021
Journal/Proceedings Bio-Design and Manufacturing
Reftype e Silva2021
DOI/URL DOI
Abstract
Critical bone defects are considered one of the major clinical challenges in reconstructive bone surgery. The combination of 3D printed conductive scaffolds and exogenous electrical stimulation (ES) is a potential favorable approach for bone tissue repair. In this study, 3D conductive scaffolds made with biocompatible and biodegradable polycaprolactone (PCL) and multi-walled carbon nanotubes (MWCNTs) were produced using the extrusion-based additive manufacturing to treat large calvary bone defects in rats. Histology results show that the use of PCL/MWCNTs scaffolds and ES contributes to thicker and increased bone tissue formation within the bone defect. Angiogenesis and mineralization are also significantly promoted using high concentration of MWCNTs (3 wt%) and ES. Moreover, scaffolds favor the tartrate-resistant acid phosphatase (TRAP) positive cell formation, while the addition of MWCNTs seems to inhibit the osteoclastogenesis but present limited effects on the osteoclast functionalities (receptor activator of nuclear factor κβ ligand (RANKL) and osteoprotegerin (OPG) expressions). The use of ES promotes the osteoclastogenesis and RANKL expressions, showing a dominant effect in the bone remodeling process. These results indicate that the combination of 3D printed conductive PCL/MWCNTs scaffold and ES is a promising strategy to treat critical bone defects and provide a cue to establish an optimal protocol to use conductive scaffolds and ES for bone tissue engineering.
AUTHOR Wang, Weiguang and Chen, Jun-Xiang and Hou, Yanhao and Bartolo, Paulo and Chiang, Wei-Hung
Title Investigations of Graphene and Nitrogen-Doped Graphene Enhanced Polycaprolactone 3D Scaffolds for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
Scaffolds play a key role in tissue engineering applications. In the case of bone tissue engineering, scaffolds are expected to provide both sufficient mechanical properties to withstand the physiological loads, and appropriate bioactivity to stimulate cell growth. In order to further enhance cell–cell signaling and cell–material interaction, electro-active scaffolds have been developed based on the use of electrically conductive biomaterials or blending electrically conductive fillers to non-conductive biomaterials. Graphene has been widely used as functioning filler for the fabrication of electro-active bone tissue engineering scaffolds, due to its high electrical conductivity and potential to enhance both mechanical and biological properties. Nitrogen-doped graphene, a unique form of graphene-derived nanomaterials, presents significantly higher electrical conductivity than pristine graphene, and better surface hydrophilicity while maintaining a similar mechanical property. This paper investigates the synthesis and use of high-performance nitrogen-doped graphene as a functional filler of poly(ɛ-caprolactone) (PCL) scaffolds enabling to develop the next generation of electro-active scaffolds. Compared to PCL scaffolds and PCL/graphene scaffolds, these novel scaffolds present improved in vitro biological performance.
AUTHOR Petretta, Mauro and Gambardella, Alessandro and Desando, Giovanna and Cavallo, Carola and Bartolotti, Isabella and Shelyakova, Tatiana and Goranov, Vitaly and Brucale, Marco and Dediu, Valentin Alek and Fini, Milena and Grigolo, Brunella
Title Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.
AUTHOR Rupp, Harald and Binder, Wolfgang H.
Title 3D Printing of Core–Shell Capsule Composites for Post-Reactive and Damage Sensing Applications [Abstract]
Year 2020
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract 3D printing of multicomponent materials as an advantageous method over traditional mold casting methods is demonstrated, developing small core–shell capsule composites fabricated by a two-step 3D printing process. Using a two-print-head system (fused deposition modeling extruder and a liquid inkjet print head), micro-sized capsules are manufactured in sizes ranging from 100 to 800 µm. The thermoplastic polymer poly(ε-caprolactone) (PCL) is chosen as matrix/shell material due to its optimal interaction with the embedded hydrophobic liquids. First, the core–shell capsules are printed with model liquids and pure PCL to optimize the printing parameters and to ensure fully enclosed capsules inside the polymer. As a proof of concept, novel “click” reaction systems, used in self-healing and stress-detection applications, are manufactured in which PCL composites with nano- and micro-fillers are combined with reactive, encapsulated liquids. The so generated 3D printed core–shell capsule composite can be used for post-printing reactions and damage sensing when combined with a fluorogenic dye.
AUTHOR García-Astrain, Clara and Lenzi, Elisa and Jimenez de Aberasturi, Dorleta and Henriksen-Lacey, Malou and Binelli, Marco R. and Liz-Marzán, Luis M.
Title 3D-Printed Biocompatible Scaffolds with Built-In Nanoplasmonic Sensors [Abstract]
Year 2020
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract 3D printing strategies have acquired great relevance toward the design of 3D scaffolds with precise macroporous structures, for supported mammalian cell growth. Despite advances in 3D model designs, there is still a shortage of detection tools to precisely monitor in situ cell behavior in 3D, thereby allowing a better understanding of the progression of diseases or to test the efficacy of drugs in a more realistic microenvironment. Even if the number of available inks has exponentially increased, they do not necessarily offer the required functionalities to be used as internal sensors. Herein the potential of surface-enhanced Raman scattering (SERS) spectroscopy for the detection of biorelevant analytes within a plasmonic hydrogel-based, 3D-printed scaffold is demonstrated. Such SERS-active scaffolds allow for the 3D detection of model molecules, such as 4-mercaptobenzoic acid. Flexibility in the choice of plasmonic nanoparticles is demonstrated through the use of gold nanoparticles with different morphologies, gold nanorods showing the best balance between SERS enhancement and scaffold transparency. Detection of the biomarker adenosine is also demonstrated as a proof-of-concept toward the use of these plasmonic scaffolds for SERS sensing of cell-secreted molecules over extended periods of time.
AUTHOR Huang, Boyang and Vyas, Cian and Byun, Jae Jong and El-Newehy, Mohamed and Huang, Zhucheng and Bártolo, Paulo
Title Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation [Abstract]
Year 2020
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
The development of highly biomimetic scaffolds in terms of composition and structures, to repair or replace damaged bone tissues, is particularly relevant for tissue engineering. This paper investigates a 3D printed porous scaffold containing aligned multi-walled carbon nanotubes (MWCNTs) and nano-hydroxyapatite (nHA), mimicking the natural bone tissue from the nanoscale to macroscale level. MWCNTs with similar dimensions as collagen fibres are coupled with nHA and mixed within a polycaprolactone (PCL) matrix to produce scaffolds using a screw-assisted extrusion-based additive manufacturing system. Scaffolds with different material compositions were extensively characterised from morphological, mechanical and biological points of views. Transmission electron microscopy and polarised Raman spectroscopy confirm the presence of aligned MWCNTs within the printed filaments. The PCL/HA/MWCNTs scaffold are similar to the nanostructure of native bone and shows overall increased mechanical properties, cell proliferation, osteogenic differentiation and scaffold mineralisation, indicating a promising approach for bone tissue regeneration.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bartolo, Paulo Jorge Da Silva
Title Investigating the Effect of Carbon Nanomaterials Reinforcing Poly(Ε-Caprolactone) Scaffolds for Bone Repair Applications [Abstract]
Year 2020
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL URL
Abstract
Scaffolds, three-dimensional (3D) substrates providing appropriate mechanical support and biological environments for new tissue formation, are the most common approaches in tissue engineering. To improve scaffold properties such as mechanical properties, surface characteristics, biocompatibility and biodegradability, different types of fillers have been used reinforcing biocompatible and biodegradable polymers. This paper investigates and compares the mechanical and biological behaviors of 3D printed poly(ε-caprolactone) scaffolds reinforced with graphene (G) and graphene oxide (GO) at different concentrations. Results show that contrary to G which improves mechanical properties and enhances cell attachment and proliferation, GO seems to show some cytotoxicity, particular at high contents.
AUTHOR Lee, Mihyun and Bae, Kraun and Levinson, Clara and Zenobi-Wong, Marcy
Title Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting [Abstract]
Year 2020
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
The field of bioprinting has made significant recent progress towards engineering tissues with increasing complexity and functionality. It remains challenging, however, to develop bioinks with optimal biocompatibility and good printing fidelity. Here, we demonstrate enhanced printability of a polymer-based bioink based on dynamic covalent linkages between nanoparticles (NPs) and polymers, which retains good biocompatibility. Amine-presenting silica NPs (ca. 45 nm) were added to a polymeric ink containing oxidized alginate (OxA). The formation of reversible imine bonds between amines on the NPs and aldehydes of OxA lead to significantly improved rheological properties and high printing fidelity. In particular, the yield stress increased with increasing amounts of NPs (14.5 Pa without NPs, 79 Pa with 2 wt% NPs). In addition, the presence of dynamic covalent linkages in the gel provided improved mechanical stability over 7 d compared to ionically crosslinked gels. The nanocomposite ink retained high printability and mechanical strength, resulting in generation of centimeter-scale porous constructs and an ear structure with overhangs and high structural fidelity. Furthermore, the nanocomposite ink supported both in vitro and in vivo maturation of bioprinted gels containing chondrocytes. This approach based on simple oxidation can be applied to any polysaccharide, thus the widely applicability of the method is expected to advance the field towards the goal of precision bioprinting.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bártolo, Paulo
Title Novel Poly(ɛ-caprolactone)/Graphene Scaffolds for Bone Cancer Treatment and Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Scaffold-based bone tissue engineering is the most relevant approach for critical-sized bone defects. It is based on the use of three-dimensional substrates to provide the appropriate biomechanical environment for bone regeneration. Despite some successful results previously reported, scaffolds were never designed for disease treatment applications. This article proposes a novel dual-functional scaffold for cancer applications, comprising both treatment and regeneration functions. These functions are achieved by combining a biocompatible and biodegradable polymer and graphene. Results indicate that high concentrations of graphene enhance the mechanical properties of the scaffolds, also increasing the inhibition on cancer cell viability and proliferation.
AUTHOR Li, J. and Liu, X. and Crook, J. M. and Wallace, G. G.
Title 3D graphene-containing structures for tissue engineering [Abstract]
Year 2019
Journal/Proceedings Materials Today Chemistry
Reftype
DOI/URL URL DOI
Abstract
Graphene and its derivatives have been extensively explored in various fields and have shown great promise toward energy harvesting, environmental protection, and health care. 3D graphene-containing structures (3DGCSs) are especially endowed with useable features relating to physicochemical properties within the hierarchical architectures. Thus, 3DGCSs are increasingly being applied for tissue engineering because of their supportability of human cells and functionalization potential. This review focuses on recent progress in tissue engineering utilizing 3DGCSs, providing insights into fabrication, application, and constraints in bionic research.
AUTHOR Alison, Lauriane and Menasce, Stefano and Bouville, Florian and Tervoort, Elena and Mattich, Iacopo and Ofner, Alessandro and Studart, André R.
Title 3D printing of sacrificial templates into hierarchical porous materials [Abstract]
Year 2019
Journal/Proceedings Scientific Reports
Reftype Alison2019
DOI/URL DOI
Abstract
Hierarchical porous materials are widespread in nature and find an increasing number of applications as catalytic supports, biological scaffolds and lightweight structures. Recent advances in additive manufacturing and 3D printing technologies have enabled the digital fabrication of porous materials in the form of lattices, cellular structures and foams across multiple length scales. However, current approaches do not allow for the fast manufacturing of bulk porous materials featuring pore sizes that span broadly from macroscopic dimensions down to the nanoscale. Here, ink formulations are designed and investigated to enable 3D printing of hierarchical materials displaying porosity at the nano-, micro- and macroscales. Pores are generated upon removal of nanodroplets and microscale templates present in the initial ink. Using particles to stabilize the droplet templates is key to obtain Pickering nanoemulsions that can be 3D printed through direct ink writing. The combination of such self-assembled templates with the spatial control offered by the printing process allows for the digital manufacturing of hierarchical materials exhibiting thus far inaccessible multiscale porosity and complex geometries.
AUTHOR Rupp, Harald and Döhler, Diana and Hilgeroth, Philipp and Mahmood, Nasir and Beiner, Mario and Binder, Wolfgang H.
Title 3D Printing of Supramolecular Polymers: Impact of Nanoparticles and Phase Separation on Printability [Abstract]
Year 2019
Journal/Proceedings Macromolecular Rapid Communications
Reftype
DOI/URL DOI
Abstract
Abstract 3D printing of linear and three-arm star supramolecular polymers with attached hydrogen bonds and their nanocomposites is reported. The concept is based on hydrogen-bonded supramolecular polymers, known to form nano-sized micellar clusters. Printability is based on reversible thermal- and shear-induced dissociation of a supramolecular polymer network, which generates stable and self-supported structures after printing, as checked via melt-rheology and X-ray scattering. The linear and three-arm star poly(isobutylene)s PIB-B2 (Mn = 8500 g mol −1), PIB-B3 (Mn = 16 000 g mol −1), and linear poly(ethylene glycol)s PEG-B2 (Mn = 900 g mol−1, 8500 g mol −1) are prepared and then probed by melt-rheology to adjust the viscosity to address the proper printing window. The supramolecular PIB polymers show a rubber-like behavior and are able to form self-supported 3D printed objects at room temperature and below, reaching polymer strand diameters down to 200–300 µm. Nanocomposites of PIB-B2 with silica nanoparticles (12 nm, 5–15 wt%) are generated, in turn leading to an improvement of their shape persistence. A blend of the linear polymer PIB-B2 and the three-arm star polymer PIB-B3 (ratio ≈ 3/1 mol) reaches an even higher structural stability, able to build free-standing structures.
AUTHOR Augurio, Adriana and Cortelletti, Paolo and Tognato, Riccardo and Rios, Anne and Levato, Riccardo and Malda, Jos and Alini, Mauro and Eglin, David and Giancane, Gabriele and Speghini, Adolfo and Serra, Tiziano
Title A Multifunctional Nanocomposite Hydrogel for Endoscopic Tracking and Manipulation [Abstract]
Year 2019
Journal/Proceedings Advanced Intelligent Systems
Reftype
DOI/URL DOI
Abstract
In this work, the fabrication of multi-responsive and hierarchically organized nanomaterial by using core-shell SrF2 upconverting nanoparticles, doped with Yb3+, Tm3+, Nd3+ incorporated into gelatin methacryloyl matrix, is reported. Upon 800 nm excitation, deep monitoring of 3D printed constructs is demonstrated. Addition of magnetic self-assembly of iron oxide nanoparticles within the hydrogel provides anisotropic structuration from the nano- to the macro-scale and magnetic responsiveness permitting remote manipulation. The present study provides a new strategy for the fabrication of a novel highly organized multi-responsive material using additive manufacturing, which could have important implications in biomedicine. This article is protected by copyright. All rights reserved.
AUTHOR Wang, Weiguang and Huang, Boyang and Byun, Jae Jong and Bártolo, Paulo
Title Assessment of PCL/carbon material scaffolds for bone regeneration [Abstract]
Year 2019
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
Biomanufacturing is a relatively new research domain focusing on the use of additive manufacturing technologies, biomaterials, cells and biomolecular signals to produce tissue constructs for tissue engineering. For bone regeneration, researchers are focusing on the use of polymeric and polymer/ceramic scaffolds seeded with osteoblasts or mesenchymal stem cells. However, the design of high-performance scaffolds in terms of mechanical, cell-stimulation and biological performance is still required. This is the first paper investigating the use of an extrusion additive manufacturing system to produce poly(ε-caprolactone) (PCL), PCL/graphene nanosheet (GNS) and PCL/carbon nanotube (CNT) scaffolds for bone applications. Scaffolds with regular and reproducible architecture were produced and evaluated from chemical, physical and biological points of view. Results suggest that the addition of both graphene and CNT allow the fabrication of scaffolds with improved properties. It also shows that scaffolds containing graphene present better mechanical properties and high cell-affinity improving cell attachment, proliferation and differentiation.
AUTHOR Wang, Weiguang and Junior, José Roberto Passarini and Nalesso, Paulo Roberto Lopes and Musson, David and Cornish, Jillian and Mendonça, Fernanda and Caetano, Guilherme Ferreira and Bártolo, Paulo
Title Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Scaffolds are important physical substrates for cell attachment, proliferation and differentiation. Multiple factors could influence the optimal design of scaffolds for a specific tissue, such as the geometry, the materials used to modulate cell proliferation and differentiation, its biodegradability and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Previous studies of human adipose-derived stem cells (hADSCs) seeded on poly(ε-caprolactone) (PCL)/graphene scaffolds have proved that the addition of small concentrations of graphene to PCL scaffolds improves cell proliferation. Based on such results, this paper further investigates, for the first time, both in vitro and in vivo characteristics of 3D printed PCL/graphene scaffolds. Scaffolds were evaluated from morphological, biological and short term immune response points of view. Results show that the produced scaffolds induce an acceptable level of immune response, suggesting high potential for in vivo applications. Finally, the scaffolds were used to treat a rat calvaria critical size defect with and without applying micro electrical stimulation (10 μA). Quantification of connective and new bone tissue formation and the levels of ALP, RANK, RANKL, OPG were considered. Results show that the use of scaffolds containing graphene and electrical stimulation seems to increase cell migration and cell influx, leading to new tissue formation, well-organized tissue deposition and bone remodelling.
AUTHOR Huang, Boyang and Vyas, Cian and Roberts, Iwan and Poutrel, Quentin-Arthur and Chiang, Wei-Hung and Blaker, Jonny J. and Huang, Zhucheng and Bártolo, Paulo
Title Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Carbon nanotubes (CNTs) with exceptional physical and chemical properties are attracting significant interest in the field of tissue engineering. Several reports investigated CNTs biocompatibility and their impact in terms of cell attachment, proliferation and differentiation mainly using polymer/CNTs membranes. However, these 2D membranes are not able to emulate the complex in vivo environment. In this paper, additive manufacturing (3D printing) is used to create composite 3D porous scaffolds containing different loadings of multi-walled carbon nanotubes (MWCNT) (0.25, 0.75 and 3 wt%) for bone tissue regeneration. Pre-processed and processed materials were extensively characterised in terms of printability, morphological and topographic characteristics and thermal, mechanical and biological properties. Scaffolds with pore sizes ranging between 366 μm and 397 μm were successfully produced and able to sustain early-stage human adipose-derived mesenchymal stem cells attachment and proliferation. Results show that MWCNTs enhances protein adsorption, mechanical and biological properties. Composite scaffolds, particularly the 3 wt% loading of MWCNTs, seem to be good candidates for bone tissue regeneration.
AUTHOR Geetha Bai, Renu and Muthoosamy, Kasturi and Manickam, Sivakumar and Hilal-Alnaqbi, Ali
Title Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering [Abstract]
Year 2019
Journal/Proceedings International journal of nanomedicine
Reftype
DOI/URL URL
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
AUTHOR Pedrotty, Dawn M. and Volodymyr, Kuzmenko and Erdem, Karabulut and Sugrue Alan, M. and Christopher, Livia and Vaidya Vaibhav, R. and McLeod Christopher, J. and Asirvatham Samuel, J. and Paul, Gatenholm and Suraj, Kapa
Title Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium
Year 2019
Journal/Proceedings Circulation: Arrhythmia and Electrophysiology
Reftype
DOI/URL DOI
AUTHOR Kang, Yuan and Wang, Chaoli and Qiao, Youbei and Gu, Junwei and Zhang, Han and Peijs, Ton and Kong, Jie and Zhang, Guangcheng and Shi, Xuetao
Title Tissue-Engineered Trachea Consisting of Electrospun Patterned sc-PLA/GO-g-IL Fibrous Membranes with Antibacterial Property and 3D-Printed Skeletons with Elasticity [Abstract]
Year 2019
Journal/Proceedings Biomacromolecules
Reftype
DOI/URL DOI
Abstract
In this study, a tissue-engineered trachea, consisting of multilevel structural electrospun polylactide (PLA) membranes enveloping 3D-printed thermoplastic polyurethane (TPU) skeletons, was developed to create a mechanically robust, antibacterial and bioresorbable graft for the tracheal reconstruction. The study design incorporated two distinct uses of stereocomplex PLA: patterned electrospun fibers to enhance tissue integration compared to the random layered fibers, meanwhile possessing good antibacterial property; and 3D-printed TPU scaffold with elasticity to provide external support and protection. Herein, ionic liquid (IL)-functioned graphene oxide (GO) was synthesized and presented enhanced mechanical and hydrophilicity properties. More interesting, antibacterial activity of the GO-g-IL modified PLA membranes were proved by Escherichia coli and Staphylococcus aureus, showing superior antibacterial effect compared to single GO or IL. The synergistic antibacterial effect could be related to that GO break cytomembrane of bacteria by its extremely sharp edges, while IL works by electrostatic interaction between its cationic structures and electronegative phosphate groups of bacteria membranes, leading to the loss of cell electrolyte and cell death. Hence, after L929 fibroblast cells were seeded on patterned fibrous membranes with phenotypic shape, further effective cell infiltration, cell proliferation and attachment were observed. In addition, the tissue-engineered trachea scaffolds were implanted into rabbit models. The in vivo result confirmed that the scaffolds with patterned membranes manifested favorable biocompatibility and promoted tissue regeneration. In this study, a tissue-engineered trachea, consisting of multilevel structural electrospun polylactide (PLA) membranes enveloping 3D-printed thermoplastic polyurethane (TPU) skeletons, was developed to create a mechanically robust, antibacterial and bioresorbable graft for the tracheal reconstruction. The study design incorporated two distinct uses of stereocomplex PLA: patterned electrospun fibers to enhance tissue integration compared to the random layered fibers, meanwhile possessing good antibacterial property; and 3D-printed TPU scaffold with elasticity to provide external support and protection. Herein, ionic liquid (IL)-functioned graphene oxide (GO) was synthesized and presented enhanced mechanical and hydrophilicity properties. More interesting, antibacterial activity of the GO-g-IL modified PLA membranes were proved by Escherichia coli and Staphylococcus aureus, showing superior antibacterial effect compared to single GO or IL. The synergistic antibacterial effect could be related to that GO break cytomembrane of bacteria by its extremely sharp edges, while IL works by electrostatic interaction between its cationic structures and electronegative phosphate groups of bacteria membranes, leading to the loss of cell electrolyte and cell death. Hence, after L929 fibroblast cells were seeded on patterned fibrous membranes with phenotypic shape, further effective cell infiltration, cell proliferation and attachment were observed. In addition, the tissue-engineered trachea scaffolds were implanted into rabbit models. The in vivo result confirmed that the scaffolds with patterned membranes manifested favorable biocompatibility and promoted tissue regeneration.
AUTHOR Caetano, Guilherme Ferreira and Wang, Weiguang and Chiang, Wei-Hung and Cooper, Glen and Diver, Carl and Blaker, Jonny James and Frade, Marco Andrey and Bártolo, Paulo
Title 3D-Printed Poly(ɛ-caprolactone)/Graphene Scaffolds Activated with P1-Latex Protein for Bone Regeneration [Abstract]
Year 2018
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Abstract Biomanufacturing is a relatively new research domain focusing on the use of additive manufacturing technologies, biomaterials, cells, and biomolecular signals to produce tissue constructs for tissue engineering. For bone regeneration, researchers are focusing on the use of polymeric and polymer/ceramic scaffolds seeded with osteoblasts or mesenchymal stem cells. However, high-performance scaffolds in terms of mechanical, cell stimulation, and biological performance are still required. This article investigates the use of an extrusion additive manufacturing system to produce poly(ɛ-caprolactone) (PCL) and PCL/graphene nanosheet scaffolds for bone applications. Scaffolds with regular and reproducible architecture and uniform dispersion of graphene were produced and coated with P1-latex protein extracted from the Hevea brasiliensis rubber tree. Results show that the obtained scaffolds cultivated with human adipose-derived stem cells present no toxicity effects. The presence of graphene nanosheet and P1-latex protein in the scaffolds increased cell proliferation compared with PCL scaffolds. Moreover, the presence of P1-latex protein promotes earlier osteogenic differentiation, suggesting that PCL/graphene/P1-latex protein scaffolds are suitable for bone regeneration applications.
AUTHOR Couck, Sarah and Saint-Remi, Julien Cousin and der Perre, Stijn Van and Baron, Gino V. and Minas, Clara and Ruch, Patrick and Denayer, Joeri F. M.
Title 3D-printed SAPO-34 monoliths for gas separation [Abstract]
Year 2018
Journal/Proceedings Microporous and Mesoporous Materials
Reftype
DOI/URL URL DOI
Abstract
Abstract A 3D printing method (the Direct Ink writing, DIW, method) is applied to produce SAPO-34 zeolite based structured adsorbents with the shape of a honeycomb-like monolith. The use of the 3D printing technique gives this structure a well-defined and easily adaptable geometry. As binder material, methyl cellulose was used. The SAPO-34 monolith was characterized by SEM as well as Ar and Hg porosimetry. The CO2 adsorption affinity, capacity and heat of adsorption were determined by recording high pressure adsorption isotherms at different temperatures, using the gravimetric technique. The separation potential was investigated by means of breakthrough experiments with mixtures of CO2 and N2. The experimental selectivity of CO2/N2 separation was compared to the selectivity as predicted by the Ideal Adsorbed Solution Theory. A drop in capacity was noticed during the experiments and N2 capacities were close to zero or slightly negative due to the very low adsorption, meaning absolute selectivity values could not be determined. However, due to the low N2 capacity, experimental selectivity is estimated to be excellent as was predicted with IAST. While the 3D printing is found to be a practical, fast and flexible route to generate monolithic adsorbent structures, improvements in formulation are required in terms of sample robustness for handling purposes and heat transfer characteristics of the obtained monoliths during gas separation.
AUTHOR Tognato, Riccardo and Armiento, Angela R. and Bonfrate, Valentina and Levato, Riccardo and Malda, Jos and Alini, Mauro and Eglin, David and Giancane, Gabriele and Serra, Tiziano
Title A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics [Abstract]
Year 2018
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Stimuli-responsive materials have the potential to enable the generation of new bioinspired devices with unique physicochemical properties and cell-instructive ability. Enhancing biocompatibility while simplifying the production methodologies, as well as enabling the creation of complex constructs, i.e., via 3D (bio)printing technologies, remains key challenge in the field. Here, a novel method is presented to biofabricate cellularized anisotropic hybrid hydrogel through a mild and biocompatible process driven by multiple external stimuli: magnetic field, temperature, and light. A low-intensity magnetic field is used to align mosaic iron oxide nanoparticles (IOPs) into filaments with tunable size within a gelatin methacryloyl matrix. Cells seeded on top or embedded within the hydrogel align to the same axes of the IOPs filaments. Furthermore, in 3D, C2C12 skeletal myoblasts differentiate toward myotubes even in the absence of differentiation media. 3D printing of the nanocomposite hydrogel is achieved and creation of complex heterogeneous structures that respond to magnetic field is demonstrated. By combining the advanced, stimuli-responsive hydrogel with the architectural control provided by bioprinting technologies, 3D constructs can also be created that, although inspired by nature, express functionalities beyond those of native tissue, which have important application in soft robotics, bioactuators, and bionic devices.
AUTHOR Wang, Hanxiao and das Neves Domingos, Marco Andre and Scenini, Fabio
Title Advanced mechanical and thermal characterization of 3D bioextruded poly(ε-caprolactone)-based composites [Abstract]
Year 2018
Journal/Proceedings Rapid Prototyping Journal
Reftype
DOI/URL DOI
Abstract
Purpose The main purpose of the present work is to study the effect of nano hydroxyapatite (HA) and graphene oxide (GO) particles on thermal and mechanical performances of 3D printed poly(ε-caprolactone) (PCL) filaments used in Bone Tissue Engineering (BTE). Design/methodology/approach Raw materials were prepared by melt blending, followed by 3D printing via 3D Discovery (regenHU Ltd., CH) with all fabricating parameters kept constant. Filaments, including pure PCL, PCL/HA, and PCL/GO, were tested under the same conditions. Several techniques were used to mechanically, thermally, and microstructurally evaluate properties of these filaments, including Differential Scanning Calorimetry (DSC), tensile test, nano indentation, and Scanning Electron Microscope (SEM). Findings Results show that both HA and GO nano particles are capable of improving mechanical performance of PCL. Enhanced mechanical properties of PCL/HA result from reinforcing effect of HA, while a different mechanism is observed in PCL/GO, where degree of crystallinity plays an important role. In addition, GO is more efficient at enhancing mechanical performance of PCL compared with HA. Originality/value For the first time, a systematic study about effects of nano HA and GO particles on bioactive scaffolds produced by Additive Manufacturing (AM) for bone tissue engineering applications is conducted in this work. Mechanical and thermal behaviors of each sample, pure PCL, PCL/HA and PCL/GO, are reported, correlated, and compared with literature.
AUTHOR Bastola, A. K. and Paudel, M. and Li, L.
Title Development of hybrid magnetorheological elastomers by 3D printing [Abstract]
Year 2018
Journal/Proceedings Polymer
Reftype
DOI/URL URL DOI
Abstract
Intelligent or smart materials have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as temperature, pH, electric or magnetic fields, etc. Magnetorheological (MR) materials are a class of smart materials whose properties can be varied by applying an external magnetic field. In this work, the possibility of employing a suitable 3D printing technology for the development of one of the smart MR materials, the magnetorheological elastomer (MRE) has been explored. In order to achieve such 3D printing, a multi-material printing is implemented, where a controlled volume of MR fluid is encapsulated within an elastomer matrix in the layer-by-layer fashion. The choice of printing materials determines the final structure of the 3D printed hybrid MR elastomer. Printing with a vulcanizing MR suspension produces the solid MR structure inside the elastomer matrix while printing with a non-vulcanizing MR suspension (MR fluid) results in the structures that the MR fluid is encapsulated inside the elastomer matrix. The 3D printability of different materials has been studied by measuring their rheological properties and we found that the highly shear thinning and thixotropic properties are important for 3D printability. The quality of the printed filaments strongly depends on the key printing parameters such as extrusion pressure, initial height and feed rate. The experimental results from the forced vibration testing show that the 3D printed MR elastomers could change their elastic and damping properties when exposed to the external magnetic field. Furthermore, the 3D printed MR elastomer also exhibits the anisotropic behavior when the direction of the magnetic field is changed with respect to the orientation of the printed filaments. This study has demonstrated that the 3D printing is viable for fabrication of hybrid MR elastomers with controlled structures of magnetic particles or MR fluids.
AUTHOR Lee, Mihyun and Bae, Kraun and Guillon, Pierre and Chang, Jin and Arlov, Øystein and Zenobi-Wong, Marcy
Title Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity [Abstract]
Year 2018
Journal/Proceedings ACS Applied Materials and Interfaces
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) bioprinting allows the fabrication of 3D structures containing living cells whose 3D shape and architecture are matched to a patient. The feature is desirable to achieve personalized treatment of trauma or diseases. However, realization of this promising technique in the clinic is greatly hindered by inferior mechanical properties of most biocompatible bioink materials. Here, we report a novel strategy to achieve printing large constructs with high printing quality and fidelity using an extrusion-based printer. We incorporate cationic nanoparticles in an anionic polymer mixture, which significantly improves mechanical properties, printability, and printing fidelity of the polymeric bioink due to electrostatic interactions between the nanoparticles and polymers. Addition of cationic-modified silica nanoparticles to an anionic polymer mixture composed of alginate and gellan gum results in significantly increased zero-shear viscosity (1062%) as well as storage modulus (486%). As a result, it is possible to print a large (centimeter-scale) porous structure with high printing quality, whereas the use of the polymeric ink without the nanoparticles leads to collapse of the printed structure during printing. We demonstrate such a mechanical enhancement is achieved by adding nanoparticles within a certain size range (90%) and extracellular matrix secretion are observed for cells printed with nanocomposite inks. The design principle demonstrated can be applied for various anionic polymer-based systems, which could lead to achievement of 3D bioprinting-based personalized treatment.
AUTHOR Kuzmenko, Volodymyr and Karabulut, Erdem and Pernevik, Elin and Enoksson, Peter and Gatenholm, Paul
Title Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines [Abstract]
Year 2018
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
Neural tissue engineering (TE), an innovative biomedical method of brain study, is very dependent on scaffolds that support cell development into a functional tissue. Recently, 3D patterned scaffolds for neural TE have shown significant positive effects on cells by a more realistic mimicking of actual neural tissue. In this work, we present a conductive nanocellulose-based ink for 3D printing of neural TE scaffolds. It is demonstrated that by using cellulose nanofibrils and carbon nanotubes as ink constituents, it is possible to print guidelines with a diameter below 1 mm and electrical conductivity of 3.8 × 10−1 S cm−1. The cell culture studies reveal that neural cells prefer to attach, proliferate, and differentiate on the 3D printed conductive guidelines. To our knowledge, this is the first research effort devoted to using cost-effective cellulosic 3D printed structures in neural TE, and we suppose that much more will arise in the near future.
AUTHOR Sommer, Marianne R. and Alison, Lauriane and Minas, Clara and Tervoort, Elena and Ruhs, Patrick A. and Studart, Andre R.
Title 3D printing of concentrated emulsions into multiphase biocompatible soft materials [Abstract]
Year 2017
Journal/Proceedings Soft Matter
Reftype
DOI/URL DOI
Abstract
3D printing via direct ink writing (DIW) is a versatile additive manufacturing approach applicable to a variety of materials ranging from ceramics over composites to hydrogels. Due to the mild processing conditions compared to other additive manufacturing methods{,} DIW enables the incorporation of sensitive compounds such as proteins or drugs into the printed structure. Although emulsified oil-in-water systems are commonly used vehicles for such compounds in biomedical{,} pharmaceutical{,} and cosmetic applications{,} printing of such emulsions into architectured soft materials has not been fully exploited and would open new possibilities for the controlled delivery of sensitive compounds. Here{,} we 3D print concentrated emulsions into soft materials{,} whose multiphase architecture allows for site-specific incorporation of both hydrophobic and hydrophilic compounds into the same structure. As a model ink{,} concentrated emulsions stabilized by chitosan-modified silica nanoparticles are studied{,} because they are sufficiently stable against coalescence during the centrifugation step needed to create a bridging network of droplets. The resulting ink is ideal for 3D printing as it displays high yield stress{,} storage modulus and elastic recovery{,} through the formation of networks of droplets as well as of gelled silica nanoparticles in the presence of chitosan. To demonstrate possible architectures{,} we print biocompatible soft materials with tunable hierarchical porosity containing an encapsulated hydrophobic compound positioned in specific locations of the structure. The proposed emulsion-based ink system offers great flexibility in terms of 3D shaping and local compositional control{,} and can potentially help address current challenges involving the delivery of incompatible compounds in biomedical applications.
AUTHOR Bastola, A. K. and Hoang, V. T. and Li, L.
Title A novel hybrid magnetorheological elastomer developed by 3D printing [Abstract]
Year 2017
Journal/Proceedings Materials and Design
Reftype
DOI/URL URL
Abstract
Abstract In this study, a novel magnetorheological (MR) hybrid elastomer has been developed using a 3D printing method. In such an MR hybrid elastomer, a controlled volume of an MR fluid was encapsulated layer by layer into an elastomer matrix by means of a 3D printer and each layer was a composite structure consisting of an MR fluid and an elastomer. Similar to current MR fluids and MR elastomers, mechanical properties of 3D printed MR hybrid elastomers could be controlled via an externally applied magnetic field. The experimental results showed that the relative change in the damping capability of the new MR elastomer was more pronounced than the change in its stiffness when exposed to an external magnetic field. The study demonstrated that the 3D printing technique is feasible for fabrication of MR elastomers with controlled microstructures including magnetic particles or MR fluids. The 3D printed MR hybrid elastomer is also a potential material as a tunable spring-damper element.
AUTHOR Baumann, Bernhard and Jungst, Tomasz and Stichler, Simone and Feineis, Susanne and Wiltschka, Oliver and Kuhlmann, Matthias and Lindén, Mika and Groll, Jürgen
Title Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds [Abstract]
Year 2017
Journal/Proceedings Angewandte Chemie International Edition
Reftype
DOI/URL DOI