REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Monocytes
Matching entries: 1 /1
All Groups
AUTHOR Sarmin, Atiya M. and El Moussaid, Nadia and Suntornnond, Ratima and Tyler, Eleanor J. and Kim, Yang-Hee and Di Cio, Stefania and Megone, William V. and Pearce, Oliver and Gautrot, Julien E. and Dawson, Jonathan and Connelly, John T.
Title Multi-Scale Analysis of the Composition, Structure, and Function of Decellularized Extracellular Matrix for Human Skin and Wound Healing Models [Abstract]
Year 2022
Journal/Proceedings Biomolecules
Reftype
DOI/URL URL DOI
Abstract
The extracellular matrix (ECM) is a complex mixture of structural proteins, proteoglycans, and signaling molecules that are essential for tissue integrity and homeostasis. While a number of recent studies have explored the use of decellularized ECM (dECM) as a biomaterial for tissue engineering, the complete composition, structure, and mechanics of these materials remain incompletely understood. In this study, we performed an in-depth characterization of skin-derived dECM biomaterials for human skin equivalent (HSE) models. The dECM materials were purified from porcine skin, and through mass spectrometry profiling, we quantified the presence of major ECM molecules, including types I, III, and VI collagen, fibrillin, and lumican. Rheological analysis demonstrated the sol-gel and shear-thinning properties of dECM materials, indicating their physical suitability as a tissue scaffold, while electron microscopy revealed a complex, hierarchical structure of nanofibers in dECM hydrogels. The dECM materials were compatible with advanced biofabrication techniques, including 3D printing within a gelatin microparticle support bath, printing with a sacrificial material, or blending with other ECM molecules to achieve more complex compositions and structures. As a proof of concept, we also demonstrate how dECM materials can be fabricated into a 3D skin wound healing model using 3D printing. Skin-derived dECM therefore represents a complex and versatile biomaterial with advantageous properties for the fabrication of next-generation HSEs.