SCIENTIFIC PUBLICATIONS

You are researching: Institute for Bioengineering of Catalonia (IBEC)
Matching entries: 11 /11
All Groups
AUTHOR Monferrer, Ezequiel and Martín-Vañó, Susana and Carretero, Aitor and García-Lizarribar, Andrea and Burgos-Panadero, Rebeca and Navarro, Samuel and Samitier, Josep and Noguera, Rosa
Title A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior [Abstract]
Year 2020
Journal/Proceedings Scientific Reports
Reftype Monferrer2020
DOI/URL DOI
Abstract
Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young’s modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
AUTHOR García-Lizarribar, Andrea and Villasante, Aranzazu and Lopez-Martin, Jose Antonio and Flandez, Marta and Soler-Vázquez, M. Carmen and Serra, Dolors and Herrero, Laura and Sagrera, Ana and Efeyan, Alejo and Samitier, Josep
Title 3D bioprinted functional skeletal muscle models have potential applications for studies of muscle wasting in cancer cachexia [Abstract]
Year 2023
Journal/Proceedings Biomaterials Advances
Reftype
DOI/URL URL DOI
Abstract
Acquired muscle diseases such as cancer cachexia are responsible for the poor prognosis of many patients suffering from cancer. In vitro models are needed to study the underlying mechanisms of those pathologies. Extrusion bioprinting is an emerging tool to emulate the aligned architecture of fibers while implementing additive manufacturing techniques in tissue engineering. However, designing bioinks that reconcile the rheological needs of bioprinting and the biological requirements of muscle tissue is a challenging matter. Here we formulate a biomaterial with dual crosslinking to modulate the physical properties of bioprinted models. We design 3D bioprinted muscle models that resemble the mechanical properties of native tissue and show improved proliferation and high maturation of differentiated myotubes suggesting that the GelMA-AlgMA-Fibrin biomaterial possesses myogenic properties. The electrical stimulation of the 3D model confirmed the contractile capability of the tissue and enhanced the formation of sarcomeres. Regarding the functionality of the models, they served as platforms to recapitulate skeletal muscle diseases such as muscle wasting produced by cancer cachexia. The genetic expression of 3D models demonstrated a better resemblance to the muscular biopsies of cachectic mouse models. Altogether, this biomaterial is aimed to fabricate manipulable skeletal muscle in vitro models in a non-costly, fast and feasible manner.
AUTHOR Pereira, Inês and Lopez-Martinez, Maria J. and Villasante, Aranzazu and Introna, Clelia and Tornero, Daniel and Canals, Josep M. and Samitier, Josep
Title Hyaluronic acid-based bioink improves the differentiation and network formation of neural progenitor cells [Abstract]
Year 2023
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Introduction: Three-dimensional (3D) bioprinting is a promising technique for the development of neuronal in vitro models because it controls the deposition of materials and cells. Finding a biomaterial that supports neural differentiation in vitro while ensuring compatibility with the technique of 3D bioprinting of a self-standing construct is a challenge.Methods: In this study, gelatin methacryloyl (GelMA), methacrylated alginate (AlgMA), and hyaluronic acid (HA) were examined by exploiting their biocompatibility and tunable mechanical properties to resemble the extracellular matrix (ECM) and to create a suitable material for printing neural progenitor cells (NPCs), supporting their long-term differentiation. NPCs were printed and differentiated for up to 15 days, and cell viability and neuronal differentiation markers were assessed throughout the culture.Results and Discussion: This composite biomaterial presented the desired physical properties to mimic the ECM of the brain with high water intake, low stiffness, and slow degradation while allowing the printing of defined structures. The viability rates were maintained at approximately 80% at all time points. However, the levels of β-III tubulin marker increased over time, demonstrating the compatibility of this biomaterial with neuronal cell culture and differentiation. Furthermore, these cells showed increased maturation with corresponding functional properties, which was also demonstrated by the formation of a neuronal network that was observed by recording spontaneous activity via Ca2+ imaging.
AUTHOR Blanco-Fernandez, Barbara and Rey-Vinolas, Sergi and Bağcı, Gülsün and Rubi-Sans, Gerard and Otero, Jorge and Navajas, Daniel and Perez-Amodio, Soledad and Engel, Elisabeth
Title Bioprinting Decellularized Breast Tissue for the Development of Three-Dimensional Breast Cancer Models [Abstract]
Year 2022
Journal/Proceedings ACS Appl. Mater. Interfaces
Reftype
DOI/URL DOI
Abstract
The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.
AUTHOR Clua-Ferré, Laura and de Chiara, Francesco and Rodríguez-Comas, Júlia and Comelles, Jordi and Martinez, Elena and Godeau, Amelie Luise and García-Alamán, Ainhoa and Gasa, Rosa and Ramón-Azcón, Javier
Title Collagen-Tannic Acid Spheroids for β-Cell Encapsulation Fabricated Using a 3D Bioprinter [Abstract]
Year 2022
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract Type 1 Diabetes results from autoimmune response elicited against β-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that β-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.
AUTHOR Falcones, Bryan and Sanz-Fraile, Héctor and Marhuenda, Esther and Mendizábal, Irene and Cabrera-Aguilera, Ignacio and Malandain, Nanthilde and Uriarte, Juan J. and Almendros, Isaac and Navajas, Daniel and Weiss, Daniel J. and Farré, Ramon and Otero, Jorge
Title Bioprintable Lung Extracellular Matrix Hydrogel Scaffolds for 3D Culture of Mesenchymal Stromal Cells [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.
AUTHOR López-Carrasco, Amparo and Martín-Vañó, Susana and Burgos-Panadero, Rebeca and Monferrer, Ezequiel and Berbegall, Ana P. and Fernández-Blanco, Beatriz and Navarro, Samuel and Noguera, Rosa
Title Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuroblastoma cell line [Abstract]
Year 2020
Journal/Proceedings Journal of Experimental & Clinical Cancer Research
Reftype López-Carrasco2020
DOI/URL DOI
Abstract
Increased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible.
AUTHOR Sanz-Fraile, Hector and Amorós, Susana and Mendizabal, Irene Isabel and Gálvez-Montón, Carolina and Prat-Vidal, Cristina and Bayés-Genís, Antoni and Navajas, Daniel and Farre, Ramon and Otero, Jorge
Title Silk-reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture [Abstract]
Year 2020
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx Mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems like phase separation and collagen denaturation appears during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In the present work, we present a new, simple and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure which results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and Atomic Force Microscopy respectively, showed a more than two-fold stiffening as compared with collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived mesenchymal stem cells cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen.
AUTHOR Cofiño, Carla and Perez-Amodio, Soledad and Semino, Carlos E. and Engel, Elisabeth and Mateos-Timoneda, Miguel A.
Title Development of a Self-Assembled Peptide/Methylcellulose-Based Bioink for 3D Bioprinting [Abstract]
Year 2019
Journal/Proceedings Macromolecular Materials and Engineering
Reftype
DOI/URL DOI
Abstract
Abstract The introduction of 3D bioprinting to fabricate living constructs with tailored architecture has provided a new paradigm for biofabrication, with the potential to overcome several drawbacks of conventional scaffold-based tissue regeneration strategies. Hydrogel-based materials are suitable candidates regarding cell biocompatibility but often display poor mechanical properties. Self-assembling peptides are a promising source of biomaterials to be used as 3D scaffolds based on their similarity to extracellular matrices (structurally and mechanically). In this study, an advanced bioink for biofabrication is presented based on the optimization of a RAD16-I-based biomaterial. The strategy followed to build 3D predefined structures by 3D printing is based on an enhancement of bioink viscosity by adding methylcellulose (MC) to a RAD16-I solution. The resultant constructs display high shape fidelity and stability and embedded human mesenchymal stem cells present high viability after 7 days of culture. Moreover, cells are also able to differentiate to the adipogenic lineage, suggesting the suitability of this novel biomaterial for soft tissue engineering applications.
AUTHOR Mestre, Rafael and Patiño, Tania and Barceló, Xavier and Anand, Shivesh and Pérez-Jiménez, Ariadna and Sánchez, Samuel
Title Force Modulation and Adaptability of 3D-Bioprinted Biological Actuators Based on Skeletal Muscle Tissue [Abstract]
Year 2019
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract The integration of biological systems into robotic devices might provide them with capabilities acquired from natural systems and significantly boost their performance. These abilities include real-time bio-sensing, self-organization, adaptability, or self-healing. As many muscle-based bio-hybrid robots and bio-actuators arise in the literature, the question of whether these features can live up to their expectations becomes increasingly substantial. Herein, the force generation and adaptability of skeletal-muscle-based bio-actuators undergoing long-term training protocols are analyzed. The 3D-bioprinting technique is used to fabricate bio-actuators that are functional, responsive, and have highly aligned myotubes. The bio-actuators are 3D-bioprinted together with two artificial posts, allowing to use it as a force measuring platform. In addition, the force output evolution and dynamic gene expression of the bio-actuators are studied to evaluate their degree of adaptability according to training protocols of different frequencies and mechanical stiffness, finding that their force generation could be modulated to different requirements. These results shed some light into the fundamental mechanisms behind the adaptability of muscle-based bio-actuators and highlight the potential of using 3D bioprinting as a rapid and cost-effective tool for the fabrication of custom-designed soft bio-robots.
AUTHOR García-Lizarribar, Andrea and Fernández-Garibay, Xiomara and Velasco-Mallorquí, Ferran and G. Castaño, Albert and Samitier, Josep and Ramón-Azcón, Javier
Title Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue
Year 2018
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI