SCIENTIFIC PUBLICATIONS

You are researching: Methacrylated Collagen (CollMA)
Matching entries: 2 /2
All Groups
AUTHOR Estermann, Manuela and Coelho, Ricardo and Jacob, Francis and Huang, Yen-Lin and Liang, Ching-Yeu and Faia-Torres, Ana Bela and Septiadi, Dedy and Drasler, Barbara and Karakocak, Bedia Begum and Dijkhoff, Irini Magdelina and Petri-Fink, Alke and Heinzelmann-Schwarz, Viola and Rothen-Rutishauser, Barbara
Title A 3D multi-cellular tissue model of the human omentum to study the formation of ovarian cancer metastasis [Abstract]
Year 2023
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Reliable and predictive experimental models are urgently needed to study metastatic mechanisms of ovarian cancer cells in the omentum. Although models for ovarian cancer cell adhesion and invasion were previously investigated, the lack of certain omental cell types, which influence the metastatic behavior of cancer cells, limits the application of these tissue models. Here, we describe a 3D multi-cellular human omentum tissue model, which considers the spatial arrangement of five omental cell types. Reproducible tissue models were fabricated combining permeable cell culture inserts and bioprinting technology to mimic metastatic processes of immortalized and patient-derived ovarian cancer cells. The implementation of an endothelial barrier further allowed studying the interaction between cancer and endothelial cells during hematogenous dissemination and the impact of chemotherapeutic drugs. This proof-of-concept study may serve as a platform for patient-specific investigations in personalized oncology in the future.
AUTHOR Oliveira, Hugo and Médina, Chantal and Stachowicz, Marie-Laure and Paiva dos Santos, Bruno and Chagot, Lise and Dusserre, Nathalie and Fricain, Jean-Christophe
Title Extracellular matrix (ECM)-derived bioinks designed to foster vasculogenesis and neurite outgrowth: Characterization and bioprinting [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration approaches. In this scope, the lack of suitable biomaterials that can be efficiently formulated as printable bioinks, while supporting specific cellular events, is currently considered as one of the main limitations in the field. Indeed, extracellular matrix (ECM)-derived biomaterials formulated to enable printability and support cellular response, for instance via integrin binding, are eagerly awaited in the field of bioprinting. Several bioactive laminin sequences, including peptides such as YIGSR and IKVAV, have been identified to promote endothelial cell attachment and/or neurite outgrowth and guidance, respectively. Here, we show the development of two distinct bioinks, designed to foster vasculogenesis or neurogenesis, based on methacrylated collagen and hyaluronic acid (CollMA and HAMA, respectively), both relevant ECM-derived polymers, and on their combination with cysteine-flanked laminin-derived peptides. Using this strategy, it was possible to optimize the bioink printability, by tuning CollMA and HAMA concentration and ratio, and modulate their bioactivity, through adjustments in the cell-active peptide sequence spatial density, without compromising cell viability. We demonstrated that cell-specific bioinks could be customized for the bioprinting of both human umbilical vein cord endothelial cells (HUVECs) or adult rat sensory neurons from the dorsal root ganglia, and could stimulate both vasculogenesis and neurite outgrowth, respectively. This approach holds great potential as it can be tailored to other cellular models, due to its inherent capacity to accommodate different peptide compositions and to generate complex peptide mixtures and/or gradients.