BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: National University of Singapore
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
All Groups
- Cell Type
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Stem Cells
- Spheroids
- Meniscus Cells
- Synoviocytes
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Neurons
- Macrophages
- Human Trabecular Meshwork Cells
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Chondrocytes
- Embrionic Kidney (HEK)
- Corneal Stromal Cells
- Fibroblasts
- β cells
- Myoblasts
- Pericytes
- Hepatocytes
- Cancer Cell Lines
- Bacteria
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Osteoblasts
- Monocytes
- Mesothelial cells
- Epithelial
- Neutrophils
- Adipocytes
- Institution
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- Tiangong University
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Innsbruck University
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Politecnico di Torino
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- University of Nottingham
- University of Geneva
- SINTEF
- Rice University
- Trinity College
- Novartis
- University of Central Florida
- Hefei University
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- University of Toronto
- Brown University
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Montreal University
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Harbin Institute of Technology
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- University of Sheffield
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- Biomaterials & Bioinks
- Application
- Personalised Pharmaceuticals
- Bioelectronics
- Biomaterial Processing
- Tissue Models – Drug Discovery
- Industrial
- Drug Discovery
- In Vitro Models
- Robotics
- Electronics – Robotics – Industrial
- Medical Devices
- Tissue and Organ Biofabrication
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Delivery
- Skin Tissue Engineering
- Vascularization
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Muscle Tissue Engineering
- Liver tissue Engineering
- BioSensors
- Review Paper
- Printing Technology
- Biomaterial
- Solid Dosage Drugs
- Thermoplastics
- Non-cellularized gels/pastes
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Magnetorheological fluid (MR fluid – MRF)
- Salecan
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Jeffamine
- Polyethylene
- SEBS
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Ionic Liquids
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Hyaluronic Acid
- Peptide gel
- Methacrylated Silk Fibroin
- Polyethylene glycol (PEG) based
- α-Bioink
- Collagen
- Elastin
- Heparin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Silk Fibroin
- Pyrogallol
- Xanthan Gum
- Fibrinogen
- Fibrin
- Paeoniflorin
- Fibronectin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- Cellulose
- Novogel
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Bioprinting Technologies
- Bioprinting Applications
AUTHOR
Title
A 3D-printing method of fabrication for metals{,} ceramics{,} and multi-materials using a universal self-curable technique for robocasting
[Abstract]
Year
2019
Journal/Proceedings
Materials Horizons
Reftype
DOI/URL
DOI
Groups
AbstractCeramics and metals are important materials that modern technologies are constructed from. The capability to produce such materials in a complex geometry with good mechanical properties can revolutionize the way we engineer our devices. Current curing techniques pose challenges such as high energy requirements{,} limitations of materials with high refractive index{,} tedious post-processing heat treatment processes{,} uneven drying shrinkages{,} and brittleness of green bodies. In this paper{,} a novel modified self-curable epoxide–amine 3D printing system is proposed to print a wide range of ceramics (metal oxides{,} nitrides{,} and carbides) and metals without the need for an external curing source. Through this technique{,} complex multi-material structures (with metal–ceramic and ceramic–ceramic combinations) can also be realized. Tailoring and matching the sintering temperatures of different materials through sintering additives and dopants{,} combined with a structural design providing maximum adhesion between interfaces{,} allow us to successfully obtain superior quality sintered multi-material structures. High-quality ceramic and metallic materials have been achieved (e.g.{,} zirconia with >98% theoretical density). Also{,} highly conductive metals and magnetic ceramics were printed and shaped uniquely without the need for a sacrificial support. With the addition of low molecular weight plasticizers and a multi-stage heat treatment process{,} crack-free and dense high-quality integrated multi-material structures fabricated by 3D printing can thus be a reality in the near future.
AUTHOR
Title
Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine Features
[Abstract]
Year
2019
Journal/Proceedings
Advanced Functional Materials
Reftype
DOI/URL
DOI
Groups
AbstractAbstract Fabrication of dense ceramic articles with intricate fine features and geometrically complex morphology by using a relatively simple and the cost-effective process still remains a challenge. Ceramics, either in its green- or sintered-form, are known for being hard yet brittle which limits further shape reconfiguration. In this work, a combinatorial process of ceramic robocasting and photopolymerization is demonstrated to produce either flexible and/or stretchable ceramic green-body (Flex-Body or Stretch-Body) that can undergo a postprinting reconfiguration process. Secondary shaping may proceed through: i) self-assembly-assisted shaping and ii) mold-assisted shaping process, which allows a well-controlled ceramic structure morphology. With a proposed well-controlled thermal heating process, the ceramic Sintered-Body can achieve >99.0% theoretical density with good mechanical rigidity. Complex and dense ceramic articles with fine features down to 65 μm can be fabricated. When combined with a multi-nozzle deposition process, i) self-shaping ceramic structures can be realized through anisotropic shrinkage induced by suspensions' composition variation and ii) technical and functional multiceramic structures can be fabricated. The simplicity of the proposed technique and its inexpensive processing cost make it an attractive approach for fabricating geometrically complex ceramic articles with unique macrostructures, which complements the existing state of-the-art ceramic additive manufacturing techniques.
AUTHOR
Title
3D-Printed Hierarchical Ceramic Architectures for Ultrafast Emulsion Treatment and Simultaneous Oil-Water Filtration
[Abstract]
Year
2022
Journal/Proceedings
ACS Materials Lett.
Reftype
DOI/URL
DOI
Groups
AbstractThere is a critical need for energy-efficient water treatment processes as the world seeks to limit global warming below 1.5 °C. Gravity-driven mesh filtration presents a sustainable solution to treating oily wastewater and emulsions, which are byproducts of many human activities. The promise of a green alternative is getting closer with the development of 3D printing combined with reusable, recyclable, and ubiquitous materials such as silica to produce durable and recyclable filters with controllable mesh spacing. In this work, several filters were fabricated to separate oily water mixtures with a separation efficiency of 99% at high flow flux by coating 3D porous ceramic architectures with organosilanes. The proposed ceramic filters can also treat oil-in-water and water-in-oil surfactant-stabilized emulsions with high flow flux. This strategy to functionalize the 3D printed silica surface to form either hydrophobic or hydrophilic surfaces can open a new possibility for gravity-driven simultaneous oil-water separation. The first gravity-driven hierarchical auto-oil-water separator (HAOS) was introduced to separate an oily water mixture into two different containers using a combination of 3D printed hierarchical hydrophilic and hydrophobic filters without an additional postseparation step.
AUTHOR
Title
Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose
[Abstract]
Year
2020
Journal/Proceedings
Additive Manufacturing
Reftype
Groups
AbstractThe extrusion-based bioprinting of hydrogels such as gelatin methacrylate (GelMA) into structures with complex shape suffers from poor printability due to their low viscosity. The present study deals with hydrogel materials by using the mixture of cell-laden photopolymerizable GelMA as a main printing material and the mixture of alginate and methylcellulose (Alg/MC) as a support material because of its high viscosity and good thixotropic property. One extrusion-based approach is developed by printing the two mixtures into structures in an alternating layer-by-layer manner, with the electrostatic interactions between polycationic GelMA and polyanionic Alg/MC contributing to the integrity of the structures. The final printed structures are exposed to ultraviolet (UV) light to form crosslinks in GelMA through photopolymerization for further structural strengthening. The one-time UV exposure minimizes cell damage in cell-GelMA, demonstrating an advantage over those in previously reported studies that required repeated UV exposures upon the printing of each layer of a structure. The other approach is developed by submerging the extrusion nozzle into a bath of Alg/MC to print cell-laden GelMA structures, which, upon printing completion, are also subject to one-time UV exposure before the removal of the support material Alg/MC. A flower with living cells is printed to demonstrate the capability of the second approach of fabricating structures with geometric complexity. The structures printed using both approaches demonstrate a well-maintained shape fidelity, structural integrity and cell viability of over 93% up to five culturing days. The proposed two printing approaches based on the cell-GelMA and Alg/MC pair will be beneficial for exploring new opportunities in bioprinting.
AUTHOR
Title
Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing
[Abstract]
Year
2019
Journal/Proceedings
Biofabrication
Reftype
DOI/URL
DOI
Groups
AbstractGelatin methacryloyl (GelMA) is a versatile biomaterial that has been shown to possess many advantages such as good biocompatibility, support for cell growth, tunable mechanical properties, photocurable capability, and low material cost. Due to these superior properties, much research has been carried out to develop GelMA as a bioink for bioprinting. However, there are still many challenges, and one major challenge is the control of its rheological properties to yield good printability. Herein, this study presents a strategy to control the rheology of GelMA through partial enzymatic crosslinking. Unlike other enzymatic crosslinking strategies where the rheological properties could not be controlled once reaction takes place, we could, to a large extent, keep the rheological properties stable by introducing a deactivation step after obtaining the optimized rheological properties. Ca2+-independent microbial transglutaminase (MTGase) was introduced to partially catalyze covalent bond formation between chains of GelMA. The enzyme was then deactivated to prevent further uncontrolled crosslinking that would render the hydrogel not printable. After printing, a secondary post-printing crosslinking step (photo crosslinking) was then introduced to ensure long-term stability of the printed structure for subsequent cell studies. Biocompatibility studies carried out using cells encapsulated in the printed structure showed excellent cell viability for at least 7 d. This strategy for better control of rheological properties of GelMA could more significantly enhance the usability of this material as bioink for bioprinting of cell-laden structures for soft tissue engineering.
AUTHOR
Year
2018
Journal/Proceedings
Advanced Drug Delivery Reviews
Reftype
Groups
AbstractThe US Food and Drug Administration approval of the first 3D printed tablet in 2015 has ignited growing interest in 3D printing, or additive manufacturing (AM), for drug delivery and testing systems. Beyond just a novel method for rapid prototyping, AM provides key advantages over traditional manufacturing of drug delivery and testing systems. These includes the ability to fabricate complex geometries to achieve variable drug release kinetics; ease of personalising pharmacotherapy for patient and lowering the cost for fabricating personalised dosages. Furthermore, AM allows fabrication of complex and micron-sized tissue scaffolds and models for drug testing systems that closely resemble in vivo conditions. However, there are several limitations such as regulatory concerns that may impede the progression to market. Here, we provide an overview of the advantages of AM drug delivery and testing, as compared to traditional manufacturing techniques. Also, we discuss the key challenges and future directions for AM enabled pharmaceutical applications.