REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Meniscus Cells
Matching entries: 1 /1
All Groups
AUTHOR Korpershoek, Jasmijn V. and Ruijter, Mylène de and Terhaard, Bastiaan F. and Hagmeijer, Michella H. and Saris, Daniël B.F. and Castilho, Miguel and Malda, Jos and Vonk, Lucienne A.
Title Potential of Melt Electrowritten Scaffolds Seeded with Meniscus Cells and Mesenchymal Stromal Cells [Abstract]
Year 2021
Journal/Proceedings International Journal of Molecular Sciences
Reftype
DOI/URL URL DOI
Abstract
Meniscus injury and meniscectomy are strongly related to osteoarthritis, thus there is a clinical need for meniscus replacement. The purpose of this study is to create a meniscus scaffold with micro-scale circumferential and radial fibres suitable for a one-stage cell-based treatment. Poly-caprolactone-based scaffolds with three different architectures were made using melt electrowriting (MEW) technology and their in vitro performance was compared with scaffolds made using fused-deposition modelling (FDM) and with the clinically used Collagen Meniscus Implants® (CMI®). The scaffolds were seeded with meniscus and mesenchymal stromal cells (MSCs) in fibrin gel and cultured for 28 d. A basal level of proteoglycan production was demonstrated in MEW scaffolds, the CMI®, and fibrin gel control, yet within the FDM scaffolds less proteoglycan production was observed. Compressive properties were assessed under uniaxial confined compression after 1 and 28 d of culture. The MEW scaffolds showed a higher Young’s modulus when compared to the CMI® scaffolds and a higher yield point compared to FDM scaffolds. This study demonstrates the feasibility of creating a wedge-shaped meniscus scaffold with MEW using medical-grade materials and seeding the scaffold with a clinically-feasible cell number and -type for potential translation as a one-stage treatment.