BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Cancer Cell Lines
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Biomaterial Processing
- Tissue Models – Drug Discovery
- Industrial
- Drug Discovery
- In Vitro Models
- Robotics
- Electronics – Robotics – Industrial
- Medical Devices
- Tissue and Organ Biofabrication
- Skin Tissue Engineering
- Vascularization
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Muscle Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Delivery
- BioSensors
- Personalised Pharmaceuticals
- Review Paper
- Printing Technology
- Biomaterial
- Thermoplastics
- Non-cellularized gels/pastes
- PEDOT
- Jeffamine
- Polyethylene
- SEBS
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Ionic Liquids
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Magnetorheological fluid (MR fluid – MRF)
- Salecan
- Poly(vinyl alcohol) (PVA)
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Silk Fibroin
- Pyrogallol
- Xanthan Gum
- Fibrinogen
- Fibrin
- Paeoniflorin
- Fibronectin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- Cellulose
- Novogel
- Hyaluronic Acid
- Peptide gel
- Methacrylated Silk Fibroin
- Polyethylene glycol (PEG) based
- α-Bioink
- Collagen
- Elastin
- Heparin
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Solid Dosage Drugs
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Neurons
- Macrophages
- Human Trabecular Meshwork Cells
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Chondrocytes
- Embrionic Kidney (HEK)
- Corneal Stromal Cells
- Fibroblasts
- β cells
- Myoblasts
- Pericytes
- Hepatocytes
- Cancer Cell Lines
- Bacteria
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Osteoblasts
- Monocytes
- Mesothelial cells
- Epithelial
- Neutrophils
- Adipocytes
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Stem Cells
- Spheroids
- Meniscus Cells
- Synoviocytes
- Institution
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Politecnico di Torino
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- University of Nottingham
- University of Geneva
- SINTEF
- Rice University
- Trinity College
- Novartis
- University of Central Florida
- Hefei University
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- University of Toronto
- Brown University
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Montreal University
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Harbin Institute of Technology
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- University of Sheffield
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- Tiangong University
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Innsbruck University
AUTHOR
Title
3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing
[Abstract]
Year
2022
Journal/Proceedings
Biofabrication
Reftype
DOI/URL
DOI
Groups
AbstractNeuroblastoma is an extracranial solid tumor which develops in early childhood and still has a poor prognosis. One strategy to increase cure rates is the identification of patient-specific drug responses in tissue models that mimic the interaction between patient cancer cells and tumor environment. We therefore developed a perfused and micro-vascularized tumor-environment model that is directly bioprinted into custom-manufactured fluidic chips. A gelatin-methacrylate/fibrin-based matrix containing multiple cell types mimics the tumor-microenvironment that promotes spontaneous micro-vessel formation by embedded endothelial cells. We demonstrate that both, adipocyte- and iPSC-derived mesenchymal stem cells can guide this process. Bioprinted channels are coated with endothelial cells post printing to form a dense vessel - tissue barrier. The tissue model thereby mimics structure and function of human soft tissue with endothelial cell-coated larger vessels for perfusion and micro-vessel networks within the hydrogel-matrix. Patient-derived neuroblastoma spheroids are added to the matrix during the printing process and grown for more than two weeks. We demonstrate that micro-vessels are attracted by and grow into tumor spheroids and that neuroblastoma cells invade the tumor-environment as soon as the spheroids disrupt. In summary, we describe the first bioprinted, micro-vascularized neuroblastoma – tumor-environment model directly printed into fluidic chips and a novel medium-throughput biofabrication platform suitable for studying tumor angiogenesis and metastasis in precision medicine approaches in future.
AUTHOR
Title
Macromolecular crowding tuned extracellular matrix deposition in a bioprinted human rhabdomyosarcoma model
[Abstract]
Year
2022
Journal/Proceedings
Bioprinting
Reftype
Groups
AbstractThe role of the extracellular matrix (ECM) in tumor recurrence and metastasis has been gaining attention. Indeed, not only cellular, but also structural proteins influence migratory and invasive capacity of tumor cells, including growth and resistance to drugs. Therefore, new in vitro tumor models that entail improved ECM formation and deposition are needed. Here, we are developed three-dimensional (3D) models of pediatric soft tissue sarcoma (Rhabdomyosarcoma [RMS]) with the two major subgroups, the embryonal (ERMS) and the alveolar (ARMS) form. We applied macromolecular crowding (MMC) technology to monolayer cultures, spheroids, and 3D bioprinted constructs. In all culture models, exposure to MMC significantly increased ECM deposition. Interestingly, bioprinted constructs showed a collagen and fibronectin matrix architecture that was comparable to that of tumor xenografts. Furthermore, the bioprinted model not only showed tumor cell growth inside the structure but also displayed cell clusters leaving the edges of the bioprinted construct, probably emulating a metastatic mechanism. ARMS and ERMS cells reacted differently in the bioprinted structure. Indeed, the characteristic metastatic behavior was much more pronounced in the more aggressive ARMS subtype. This promising approach opens new avenues for studying RMS microenvironment and creating a platform for cancer drug testing including the native tumor ECM.
AUTHOR
Title
A 3D biofabricated cutaneous squamous cell carcinoma tissue model with multi-channel confocal microscopy imaging biomarkers to quantify antitumor effects of chemotherapeutics in tissue
[Abstract]
Year
2020
Journal/Proceedings
Oncotarget; Vol 11, No 27
Reftype
DOI/URL
URL
Groups
Abstract// James R. Browning 1 , Paige Derr 2 , Kristy Derr 2 , Nicole Doudican 3 , Sam Michael 2 , Samantha R. Lish 1 , Nicholas A. Taylor 3 , James G. Krueger 1 , Marc Ferrer 2 , John A. Carucci 3 and Daniel S. Gareau 1 1 Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA 2 National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA 3 The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA Correspondence to: Daniel S. Gareau, email: dgareau@rockefeller.edu Keywords: squamous cell carcinoma; screening; 3D printing; in vitro model; confocal microscopy Received: January 05, 2020 Accepted: April 03, 2020 Published: July 07, 2020 ABSTRACT Cutaneous squamous cell carcinoma (cSCC) causes approximately 10,000 deaths annually in the U. S. Current therapies are largely ineffective against metastatic and locally advanced cSCC. There is a need to identify novel, effective, and less toxic small molecule cSCC therapeutics. We developed a 3-dimensional bioprinted skin (3DBPS) model of cSCC tumors together with a microscopy assay to test chemotherapeutic effects in tissue. The full thickness SCC tissue model was validated using hematoxylin and eosin (H&E) and immunohistochemical histological staining, confocal microscopy, and cDNA microarray analysis. A nondestructive, 3D fluorescence confocal imaging assay with tdTomato-labeled A431 SCC and ZsGreen-labeled keratinocytes was developed to test efficacy and general toxicity of chemotherapeutics. Fluorescence-derived imaging biomarkers indicated that 50% of cancer cells were killed in the tissue after 1?M 5-Fluorouracil 48-hour treatment, compared to a baseline of 12% for untreated controls. The imaging biomarkers also showed that normal keratinocytes were less affected by treatment (11% killed) than the untreated tissue, which had no significant killing effect. Data showed that 5-Fluorouracil selectively killed cSCC cells more than keratinocytes. Our 3DBPS assay platform provides cellular-level measurement of cell viability and can be adapted to achieve nondestructive high-throughput screening (HTS) in bio-fabricated tissues.
AUTHOR
Title
A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior
[Abstract]
Year
2020
Journal/Proceedings
Scientific Reports
Reftype
Monferrer2020
DOI/URL
DOI
Groups
AbstractThree-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young’s modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
AUTHOR
Title
High-throughput production of liver parenchymal microtissues and enrichment of organ-specific functions in gelatin methacrylamide microenvironment
[Abstract]
Year
2022
Journal/Proceedings
Biotechnology and Bioengineering
Reftype
DOI/URL
DOI
Groups
AbstractAbstract Liver parenchymal microtissues (LPMTs) are three-dimensional (3D) aggregates of hepatocytes that recapitulate in vivo-like cellular assembly. They are considered as a valuable model to study drug metabolism, disease biology, and serve as ideal building blocks for liver tissue engineering. However, their integration into the mainstream drug screening process has been hindered due to the lack of simple, rapid techniques to produce a large number of uniform microtissues and preserve their structural–functional integrity over the long term. Here, we present a high-throughput methodology to produce LPMTs in a novel, economic, and reusable Hanging-drop Culture Chamber (HdCC). A drop-on-demand bioprinting approach was optimized to generate droplets of HepG2 cell suspension on a polyethylene terephthalate substrate. The substrates carrying droplets were placed inside a novel HdCC and incubated to obtain 1600 LPMTs having a size of 200–300 μm. Tissue size, cell viability, cellular arrangement and polarity, and insulin-mediated glucose uptake by LPMTs were analyzed. The microtissues were viable and exhibited an active response to insulin stimulation. Cells within the microtissue reorganized to form hepatic plate-like structures and expressed apical (Multidrug Resistance Protein 2 [MRP2]) and epithelial (Zonula Occludens 1 [ZO1]) markers. Further to maintain the structural integrity and enhance the functional capabilities, LPMTs were sandwiched within gelatin methacrylamide (GelMA) hydrogel and the liver-specific functions were monitored for 2 weeks. The results showed that the 3D structure of LPMTs in GelMA sandwich was maintained while the albumin secretion, urea synthesis, and cytochrome P450 activity were enhanced compared with LPMTs in suspension. In conclusion, this study presents a novel culture chamber for mass production of microtissues and a method for enhancing organ-specific functions of LPMTs in vitro.
AUTHOR
Title
Microvalve bioprinting as a biofabrication tool to decipher tumor and endothelial cell crosstalk: Application to a simplified glioblastoma model
[Abstract]
Year
2021
Journal/Proceedings
Bioprinting
Reftype
Groups
AbstractBioprinting technologies are powerful new bioengineering tools that can spatially reproduce multiple microenvironmental cues in a highly controlled, tunable, and precise manner. In this study, microvalve bioprinting technology was successfully used to print in close proximity endothelial and tumor cells at higher concentrations than previously thought possible, while preserving their viability. We propose that the resulting multicellular models, bioprinted in a controlled extracellular matrix microenvironment, are well-suited to study endothelial and cancer cell crosstalk within a cancer niche. As proof of concept, microvalve bioprinting was applied to the bioengineering of a simplified glioblastoma model in which biological processes involved in tumor expansion, such as tumor cell invasion patterns, cell proliferation, and senescence could be easily visualized and quantified. In this model, U251 glioblastoma cells and primary human umbilical vein endothelial cells (HUVECs) exhibited good printability and high viability after printing. U251 cells formed physiologically relevant clusters and invasion margins, while HUVECs generated vascular-like networks when primary fibroblasts were added to the model. An oxidative stress mimicking the one encountered within a tumor microenvironment during radiotherapy or genotoxic chemotherapy was shown to both diminish endothelial cells proliferation and to increase their senescence. Results also suggested that stressed glioblastoma cells may alter normal endothelial cell proliferation but not impact their senescence. This data demonstrates the potential of microvalve bioprinting to fabricate in vitro models that can help decipher endothelial and tumor cell crosstalk, within controlled and modulable microenvironments, and can then be used to address critical questions in the context of cancer recurrence.
AUTHOR
Year
2023
Journal/Proceedings
Biosensors and Bioelectronics
Reftype
Groups
AbstractEngineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 μM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.
AUTHOR
Title
A 3D multi-cellular tissue model of the human omentum to study the formation of ovarian cancer metastasis
[Abstract]
Year
2023
Journal/Proceedings
Biomaterials
Reftype
Groups
AbstractReliable and predictive experimental models are urgently needed to study metastatic mechanisms of ovarian cancer cells in the omentum. Although models for ovarian cancer cell adhesion and invasion were previously investigated, the lack of certain omental cell types, which influence the metastatic behavior of cancer cells, limits the application of these tissue models. Here, we describe a 3D multi-cellular human omentum tissue model, which considers the spatial arrangement of five omental cell types. Reproducible tissue models were fabricated combining permeable cell culture inserts and bioprinting technology to mimic metastatic processes of immortalized and patient-derived ovarian cancer cells. The implementation of an endothelial barrier further allowed studying the interaction between cancer and endothelial cells during hematogenous dissemination and the impact of chemotherapeutic drugs. This proof-of-concept study may serve as a platform for patient-specific investigations in personalized oncology in the future.
AUTHOR
Year
2023
Journal/Proceedings
Advanced NanoBiomed Research
Reftype
DOI/URL
DOI
Groups
AbstractThe demand for high-throughput and scalable cell expansion platforms that can accommodate diverse cell types remains a critical requirement across various biomedical fields. Fibronectin (Fn), an essential component of the extracellular matrix (ECM), has been used as a conformal surface coating for two-dimensional (2D) cell culture systems. However, the soluble, globular Fn used for 2D coatings differs structurally from the native Fn, which possesses a three-dimensional (3D) fibrillar structure. Herein, a large-scale engineered ECM (EECM) cell expansion platform based on a 3D fibrillar Fn network spanning over centimeters is presented. Extended fibrillar networks are formed by shearing dilute Fn solutions over tessellated polymeric scaffolds, which are conveniently prepared by 3D printing. The structure and size of the Fn-based 3D EECM scaffold are optimized by evaluating the proliferation of a colorectal tumor cell line, CT26, commonly used in the in vivo tumor immunotherapy models. The 3D EECM scaffolds support a fourfold more efficient tumor cell expansion than a conventional 2D culture system, demonstrating the potential efficacy in supporting the robust expansion of cancer cells ex vivo with an eye on cancer immunotherapy.
AUTHOR
Title
Electrospun decellularized extracellular matrix scaffolds promote the regeneration of injured neurons
[Abstract]
Year
2023
Journal/Proceedings
Biomaterials and Biosystems
Reftype
Groups
AbstractTraumatic injury to the spinal cord (SCI) causes the transection of neurons, formation of a lesion cavity, and remodeling of the microenvironment by excessive extracellular matrix (ECM) deposition and scar formation leading to a regeneration-prohibiting environment. Electrospun fiber scaffolds have been shown to simulate the ECM and increase neural alignment and neurite outgrowth contributing to a growth-permissive matrix. In this work, electrospun ECM-like fibers providing biochemical and topological cues are implemented into a scaffold to represent an oriented biomaterial suitable for the alignment and migration of neural cells in order to improve spinal cord regeneration. The successfully decellularized spinal cord ECM (dECM), with no visible cell nuclei and dsDNA content < 50 ng/mg tissue, showed preserved ECM components, such as glycosaminoglycans and collagens. Serving as the biomaterial for 3D printer-assisted electrospinning, highly aligned and randomly distributed dECM fiber scaffolds (< 1 µm fiber diameter) were fabricated. The scaffolds were cytocompatible and supported the viability of a human neural cell line (SH-SY5Y) for 14 days. Cells were selectively differentiated into neurons, as confirmed by immunolabeling of specific cell markers (ChAT, Tubulin ß), and followed the orientation given by the dECM scaffolds. After generating a lesion site on the cell-scaffold model, cell migration was observed and compared to reference poly-ε-caprolactone fiber scaffolds. The aligned dECM fiber scaffold promoted the fastest and most efficient lesion closure, indicating superior cell guiding capabilities of dECM-based scaffolds. The strategy of combining decellularized tissues with controlled deposition of fibers to optimize biochemical and topographical cues opens the way for clinically relevant central nervous system scaffolding solutions.
AUTHOR
Title
Electrospun/3D-Printed Bicomponent Scaffold Co-Loaded with a Prodrug and a Drug with Antibacterial and Immunomodulatory Properties
[Abstract]
Year
2023
Journal/Proceedings
Polymers
Reftype
Groups
AbstractThis work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin–polyethylene glycol–indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing.
AUTHOR
Title
Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing
[Abstract]
Year
2023
Journal/Proceedings
Gels
Reftype
Groups
AbstractNatural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide’s polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
AUTHOR
Title
A 3D Collagen-Based Bioprinted Model to Study Osteosarcoma Invasiveness and Drug Response
[Abstract]
Year
2022
Journal/Proceedings
Polymers
Reftype
Groups
AbstractThe biological and therapeutic limits of traditional 2D culture models, which only partially mimic the complexity of cancer, have recently emerged. In this study, we used a 3D bioprinting platform to process a collagen-based hydrogel with embedded osteosarcoma (OS) cells. The human OS U-2 OS cell line and its resistant variant (U-2OS/CDDP 1 μg) were considered. The fabrication parameters were optimized to obtain 3D printed constructs with overall morphology and internal microarchitecture that accurately match the theoretical design, in a reproducible and stable process. The biocompatibility of the 3D bioprinting process and the chosen collagen bioink in supporting OS cell viability and metabolism was confirmed through multiple assays at short- (day 3) and long- (day 10) term follow-ups. In addition, we tested how the 3D collagen-based bioink affects the tumor cell invasive capabilities and chemosensitivity to cisplatin (CDDP). Overall, we developed a new 3D culture model of OS cells that is easy to set up, allows reproducible results, and better mirrors malignant features of OS than flat conditions, thus representing a promising tool for drug screening and OS cell biology research.
AUTHOR
Title
Bioprinting Decellularized Breast Tissue for the Development of Three-Dimensional Breast Cancer Models
[Abstract]
Year
2022
Journal/Proceedings
ACS Appl. Mater. Interfaces
Reftype
DOI/URL
DOI
Groups
AbstractThe tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.
AUTHOR
Title
Development and evaluation of a multicomponent bioink consisting of alginate, gelatin, diethylaminoethyl cellulose and collagen peptide for 3D bioprinting of tissue construct for drug screening application
[Abstract]
Year
2022
Journal/Proceedings
International Journal of Biological Macromolecules
Reftype
Groups
AbstractThree dimensional (3D) bioprinting technology has been making a progressive advancement in the field of tissue engineering to produce tissue constructs that mimic the shape, framework, and microenvironment of an organ. The technology has not only paved the way to organ development but has been widely studied for its application in drug and cosmetic testing using 3D bioprinted constructs. However, not much has been explored on the utilization of bioprinting technology for the development of tumor models to test anti-cancer drug efficacy. The conventional methodology involves a two dimensional (2D) monolayer model to test cellular drug response which has multiple limitations owing to its inability to mimic the natural tissue environment. The choice of bioink for 3D bioprinting is critical as cell morphology and proliferation depend greatly on the property of bioink. In this study, we developed a multicomponent bioink composed of alginate, diethylaminoethyl cellulose, gelatin, and collagen peptide to generate a 3D bioprinted construct. The bioink has been characterised and validated for its printability, shape fidelity and biocompatibility to be used for generating tumor models. Further, a bioprinted tumor model was developed using lung cancer cell line and the efficacy of 3D printed construct for drug screening application was established.
AUTHOR
Title
Radical scavenging gelatin methacrylamide based bioink formulation for three dimensional bioprinting of parenchymal liver construct
[Abstract]
Year
2022
Journal/Proceedings
Bioprinting
Reftype
Groups
AbstractMethacrylated gelatin (GelMA) in the form of methacryloyl, methacrylate, and methacrylamide is an established and widely accepted photocrosslinkable bioink, for three dimensional bioprinting of various tissues. One of the limitations of photocrosslinkable bioinks is the inability to control the free radicals generated by photoinitiators and ultraviolet (UV) rays. The presence of excess free radicals compromises the viability and functionality of cells during crosslinking. In this study, ascorbic acid, a known free radical scavenger (FRS) molecule, was introduced into the GelMA bioink formulation to protect the cell viability, proliferation, and tissue functions of 3D bioprinted parenchymal liver constructs. The concentration of FRS in the bioink was optimized and used for 3D bioprinting of HepG2 cells. The results confirmed that the inclusion of 3.4 mM FRS in the GelMA bioink formulation nullified the excess ROS formed inside the cells. Furthermore, the optimized GelMA formulation containing FRS preserved and improved the cell activity, albumin, and urea synthesis in the 3D construct over 7 days in culture. In the future, this concept could be implemented in the biofabrication of large liver constructs that require multiple or longer durations of UV irradiation.
AUTHOR
Title
Computational modeling identifies multitargeted kinase inhibitors as effective therapies for metastatic, castration-resistant prostate cancer
[Abstract]
Year
2021
Journal/Proceedings
Proceedings of the National Academy of Sciences
Reftype
Groups
AbstractMetastatic, castration-resistant prostate cancer (mCRPC) is an advanced prostate cancer with limited therapeutic options and poor patient outcomes. To investigate whether multitargeted kinase inhibitors (KIs) represent an opportunity for mCRPC drug development, we applied machine learning{textendash}based functional screening and identified two KIs, PP121 and SC-1, which demonstrated strong suppression of CRPC growth in vitro and in vivo. Furthermore, we show the marked ability of these KIs to improve on standard-of-care chemotherapy in both tumor response and survival, suggesting that combining multitargeted KIs with chemotherapy represents a promising avenue for mCRPC treatment. Overall, our findings demonstrate the application of a multidisciplinary strategy that blends bench science with machine-learning approaches for rapidly identifying KIs that result in desired phenotypic effects.Castration-resistant prostate cancer (CRPC) is an advanced subtype of prostate cancer with limited therapeutic options. Here, we applied a systems-based modeling approach called kinome regularization (KiR) to identify multitargeted kinase inhibitors (KIs) that abrogate CRPC growth. Two predicted KIs, PP121 and SC-1, suppressed CRPC growth in two-dimensional in vitro experiments and in vivo subcutaneous xenografts. An ex vivo bone mimetic environment and in vivo tibia xenografts revealed resistance to these KIs in bone. Combining PP121 or SC-1 with docetaxel, standard-of-care chemotherapy for late-stage CRPC, significantly reduced tibia tumor growth in vivo, decreased growth factor signaling, and vastly extended overall survival, compared to either docetaxel monotherapy. These results highlight the utility of computational modeling in forming physiologically relevant predictions and provide evidence for the role of multitargeted KIs as chemosensitizers for late-stage, metastatic CRPC.All study data are included in the article and/or supporting information.
AUTHOR
Year
2021
Journal/Proceedings
Advanced Functional Materials
Reftype
DOI/URL
DOI
Groups
AbstractAbstract The development of multifunctional 3D printing materials from sustainable natural resources is a high priority in additive manufacturing. Using an eco-friendly method to transform hard pollen grains into stimulus-responsive microgel particles, we engineered a pollen-derived microgel suspension that can serve as a functional reinforcement for composite hydrogel inks and as a supporting matrix for versatile freeform 3D printing systems. The pollen microgel particles enabled the printing of composite inks and improved the mechanical and physiological stabilities of alginate and hyaluronic acid hydrogel scaffolds for 3D cell culture applications. Moreover, the particles endowed the inks with stimulus-responsive controlled release properties. The suitability of the pollen microgel suspension as a supporting matrix for freeform 3D printing of alginate and silicone rubber inks was demonstrated and optimized by tuning the rheological properties of the microgel. Compared with other classes of natural materials, pollen grains have several compelling features, including natural abundance, renewability, affordability, processing ease, monodispersity, and tunable rheological features, which make them attractive candidates to engineer advanced materials for 3D printing applications.
AUTHOR
Year
2021
Journal/Proceedings
Journal of Nuclear Medicine
Reftype
Groups
AbstractRadium 223 (223Ra) is an α-emitter approved for the treatment of bone metastatic prostate cancer (PCa), which exerts direct cytotoxicity towards PCa cells near the bone interface, whereas cells positioned in the core respond poorly, due to short α-particle penetrance. β1 integrin (β1I) interference has been shown to increase radiosensitivity and significantly enhance external beam radiation efficiency. We hypothesized that targeting β1I would improve 223Ra outcome. We tested the effect of combining 223Ra and anti-β1I antibody treatment in PC3 and C4-2B PCa cell models expressing high and low β1I levels, respectively. In vivo tumor growth was evaluated through bioluminescence. Cellular and molecular determinants of response were analyzed by ex vivo three-dimensional imaging of bone lesions, proteomic analysis and further confirmed by computational modeling and in vitro functional analysis in tissue-engineered bone mimetic systems. Interference with β1I combined with 223Ra reduced PC3 cell growth in bone and significantly improved overall mouse survival, while no change was achieved in C4-2B tumors. Anti-β1I treatment decreased PC3 tumor cell mitosis index and spatially expanded 223Ra lethal effects two-fold, in vivo and in silico. Regression was paralleled by decreased expression of radio-resistance mediators. Targeting β1I significantly improves 223Ra outcome and points towards combinatorial application in PCa tumors with high β1I expression.
AUTHOR
Title
Preventing Memory Effects in Surface-Enhanced Raman Scattering Substrates by Polymer Coating and Laser-Activated Deprotection
[Abstract]
Year
2021
Journal/Proceedings
ACS Nano
Reftype
DOI/URL
DOI
Groups
AbstractThe development of continuous monitoring systems requires in situ sensors that are capable of screening multiple chemical species and providing real-time information. Such in situ measurements, in which the sample is analyzed at the point of interest, are hindered by underlying problems derived from the recording of successive measurements within complex environments. In this context, surface-enhanced Raman scattering (SERS) spectroscopy appears as a noninvasive technology with the ability of identifying low concentrations of chemical species as well as resolving dynamic processes under different conditions. To this aim, the technique requires the use of a plasmonic substrate, typically made of nanostructured metals such as gold or silver, to enhance the Raman signal of adsorbed molecules (the analyte). However, a common source of uncertainty in real-time SERS measurements originates from the irreversible adsorption of (analyte) molecules onto the plasmonic substrate, which may interfere in subsequent measurements. This so-called “SERS memory effect” leads to measurements that do not accurately reflect varying conditions of the sample over time. We introduce herein the design of plasmonic substrates involving a nonpermeable poly(lactic-co-glycolic acid) (PLGA) thin layer on top of the plasmonic nanostructure, toward controlling the adsorption of molecules at different times. The polymeric layer can be locally degraded by irradiation with the same laser used for SERS measurements (albeit at a higher fluence), thereby creating a micrometer-sized window on the plasmonic substrate available to molecules present in solution at a selected measurement time. Using SERS substrates coated with such thermolabile polymer layers, we demonstrate the possibility of performing over 10,000 consecutive measurements per substrate as well as accurate continuous monitoring of analytes in microfluidic channels and biological systems. The development of continuous monitoring systems requires in situ sensors that are capable of screening multiple chemical species and providing real-time information. Such in situ measurements, in which the sample is analyzed at the point of interest, are hindered by underlying problems derived from the recording of successive measurements within complex environments. In this context, surface-enhanced Raman scattering (SERS) spectroscopy appears as a noninvasive technology with the ability of identifying low concentrations of chemical species as well as resolving dynamic processes under different conditions. To this aim, the technique requires the use of a plasmonic substrate, typically made of nanostructured metals such as gold or silver, to enhance the Raman signal of adsorbed molecules (the analyte). However, a common source of uncertainty in real-time SERS measurements originates from the irreversible adsorption of (analyte) molecules onto the plasmonic substrate, which may interfere in subsequent measurements. This so-called “SERS memory effect” leads to measurements that do not accurately reflect varying conditions of the sample over time. We introduce herein the design of plasmonic substrates involving a nonpermeable poly(lactic-co-glycolic acid) (PLGA) thin layer on top of the plasmonic nanostructure, toward controlling the adsorption of molecules at different times. The polymeric layer can be locally degraded by irradiation with the same laser used for SERS measurements (albeit at a higher fluence), thereby creating a micrometer-sized window on the plasmonic substrate available to molecules present in solution at a selected measurement time. Using SERS substrates coated with such thermolabile polymer layers, we demonstrate the possibility of performing over 10,000 consecutive measurements per substrate as well as accurate continuous monitoring of analytes in microfluidic channels and biological systems.
AUTHOR
Year
2020
Journal/Proceedings
Advanced Functional Materials
Reftype
DOI/URL
DOI
Groups
AbstractAbstract 3D printing strategies have acquired great relevance toward the design of 3D scaffolds with precise macroporous structures, for supported mammalian cell growth. Despite advances in 3D model designs, there is still a shortage of detection tools to precisely monitor in situ cell behavior in 3D, thereby allowing a better understanding of the progression of diseases or to test the efficacy of drugs in a more realistic microenvironment. Even if the number of available inks has exponentially increased, they do not necessarily offer the required functionalities to be used as internal sensors. Herein the potential of surface-enhanced Raman scattering (SERS) spectroscopy for the detection of biorelevant analytes within a plasmonic hydrogel-based, 3D-printed scaffold is demonstrated. Such SERS-active scaffolds allow for the 3D detection of model molecules, such as 4-mercaptobenzoic acid. Flexibility in the choice of plasmonic nanoparticles is demonstrated through the use of gold nanoparticles with different morphologies, gold nanorods showing the best balance between SERS enhancement and scaffold transparency. Detection of the biomarker adenosine is also demonstrated as a proof-of-concept toward the use of these plasmonic scaffolds for SERS sensing of cell-secreted molecules over extended periods of time.
AUTHOR
Title
Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis
[Abstract]
Year
2020
Journal/Proceedings
eLife
Reftype
DOI/URL
DOI
Groups
AbstractThe extracellular matrix (ECM) plays critical roles in tumor progression and metastasis. However, the contribution of ECM proteins to early metastatic onset in the peritoneal cavity remains unexplored. Here, we suggest a new route of metastasis through the interaction of integrin alpha 2 (ITGA2) with collagens enriched in the tumor coinciding with poor outcome in patients with ovarian cancer. Using multiple gene-edited cell lines and patient-derived samples, we demonstrate that ITGA2 triggers cancer cell adhesion to collagen, promotes cell migration, anoikis resistance, mesothelial clearance, and peritoneal metastasis in vitro and in vivo. Mechanistically, phosphoproteomics identify an ITGA2-dependent phosphorylation of focal adhesion kinase and mitogen-activated protein kinase pathway leading to enhanced oncogenic properties. Consequently, specific inhibition of ITGA2-mediated cancer cell-collagen interaction or targeting focal adhesion signaling may present an opportunity for therapeutic intervention of metastatic spread in ovarian cancer.
AUTHOR
Year
2020
Journal/Proceedings
Journal of the Mechanical Behavior of Biomedical Materials
Reftype
Groups
AbstractTo overcome the mechanical drawback of bioink, we proposed a supporter model to enhance the mechanical strength of bioprinted 3D constructs, in which a unit-assembly idea was involved. Based on Computed Tomography images of critical-sized rabbit bone defect, the 3D re-construction was accomplished by a sequenced process using Mimics 17.0, BioCAM and BioCAD software. 3D constructs were bioprinted using polycaprolactone (PCL) ink for the outer supporter under extrusion mode, and cell-laden tricalcium phosphate (TCP)/alginate bioink for the inner filler under air pressure dispensing mode. The relationship of viscosity of bioinks, 3D bioprinting pressure, TCP/alginate ratio and cell survival were investigated by the shear viscosities analysis, live/dead cell test and cell-counting kit 8 measurement. The viscosity of bioinks at 1.0 s−1-shear rate could be adjusted within the range of 1.75 ± 0.29 Pa·s to 155.65 ± 10.86 Pa·s by changing alginate concentration, corresponding to 10 kPa–130 kPa of printing pressure. This design with PCL supporter could significantly enhance the compressive strength and compressive modulus of standardized 3D mechanical testing specimens up to 2.15 ± 0.14 MPa to 2.58 ± 0.09 MPa, and 42.83 ± 4.75 MPa to 53.12 ± 1.19 MPa, respectively. Cells could maintain the high viability (over 80%) under the given printing pressure but cell viability declined with the increase of TCP content. Cell survival after experiencing 7 days of cell culture could be achieved when the ratio of TCP/alginate was 1 : 4. All data supported the feasibility of the supporter and unit-assembly model to enhance mechanical properties of bioprinted 3D constructs.
AUTHOR
Title
Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuroblastoma cell line
[Abstract]
Year
2020
Journal/Proceedings
Journal of Experimental & Clinical Cancer Research
Reftype
López-Carrasco2020
DOI/URL
DOI
Groups
AbstractIncreased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible.
AUTHOR
Year
2020
Journal/Proceedings
Advanced Functional Materials
Reftype
DOI/URL
DOI
Groups
AbstractAbstract The composition and intercellular interactions of tumor cells in the tissues dictate the biochemical and metabolic properties of the tumor microenvironment. The metabolic rewiring has a profound impact on the properties of the microenvironment, to an extent that monitoring such perturbations could harbor diagnostic and therapeutic relevance. A growing interest in these phenomena has inspired the development of novel technologies with sufficient sensitivity and resolution to monitor metabolic alterations in the tumor microenvironment. In this context, surface-enhanced Raman scattering (SERS) can be used for the label-free detection and imaging of diverse molecules of interest among extracellular components. Herein, the application of nanostructured plasmonic substrates comprising Au nanoparticles, self-assembled as ordered superlattices, to the precise SERS detection of selected tumor metabolites, is presented. The potential of this technology is first demonstrated through the analysis of kynurenine, a secreted immunomodulatory derivative of the tumor metabolism and the related molecules tryptophan and purine derivatives. SERS facilitates the unambiguous identification of trace metabolites and allows the multiplex detection of their characteristic fingerprints under different conditions. Finally, the effective plasmonic SERS substrate is combined with a hydrogel-based three-dimensional cancer model, which recreates the tumor microenvironment, for the real-time imaging of metabolite alterations and cytotoxic effects on tumor cells.
AUTHOR
Title
Novel Poly(ɛ-caprolactone)/Graphene Scaffolds for Bone Cancer Treatment and Bone Regeneration
[Abstract]
Year
2020
Journal/Proceedings
3D Printing and Additive Manufacturing
Reftype
DOI/URL
DOI
Groups
AbstractScaffold-based bone tissue engineering is the most relevant approach for critical-sized bone defects. It is based on the use of three-dimensional substrates to provide the appropriate biomechanical environment for bone regeneration. Despite some successful results previously reported, scaffolds were never designed for disease treatment applications. This article proposes a novel dual-functional scaffold for cancer applications, comprising both treatment and regeneration functions. These functions are achieved by combining a biocompatible and biodegradable polymer and graphene. Results indicate that high concentrations of graphene enhance the mechanical properties of the scaffolds, also increasing the inhibition on cancer cell viability and proliferation.
AUTHOR
Title
A bilayer photoreceptor‐retinal tissue model with gradient cell density design: A study of microvalve‐based bioprinting
[Abstract]
Year
2018
Journal/Proceedings
Journal of Tissue Engineering and Regenerative Medicine
Reftype
DOI/URL
DOI
Groups
AbstractAbstract ARPE‐19 and Y79 cells were precisely and effectively delivered to form an in vitro retinal tissue model via 3D cell bioprinting technology. The samples were characterized by cell viability assay, haematoxylin and eosin and immunofluorescent staining, scanning electrical microscopy and confocal microscopy, and so forth. The bioprinted ARPE‐19 cells formed a high‐quality cell monolayer in 14 days. Manually seeded ARPE‐19 cells were poorly controlled during and after cell seeding, and they aggregated to form uneven cell layer. The Y79 cells were subsequently bioprinted on the ARPE‐19 cell monolayer to form 2 distinctive patterns. The microvalve‐based bioprinting is efficient and accurate to build the in vitro tissue models with the potential to provide similar pathological responses and mechanism to human diseases, to mimic the phenotypic endpoints that are comparable with clinical studies, and to provide a realistic prediction of clinical efficacy.
AUTHOR
Year
2018
Journal/Proceedings
Nanomaterials
Reftype
Groups
AbstractPolydopamine can form biocompatible particles that convert light into heat. Recently, a protocol has been optimized to synthesize polydopamine/protein hybrid nanoparticles that retain the biological function of proteins, and combine it with the stimuli-induced heat generation of polydopamine. We have utilized this novel system to form polydopamine particles, containing transferrin (PDA/Tf). Mouse melanoma cells, which strongly express the transferrin receptor, were exposed to PDA/Tf nanoparticles (NPs) and, subsequently, were irradiated with a UV laser. The cell death rate was monitored in real-time. When irradiated, the melanoma cells exposed to PDA/Tf NPs underwent apoptosis, faster than the control cells, pointing towards the ability of PDA/Tf to mediate UV-light-induced cell death. The system was also validated in an organotypic, 3D-printed tumor spheroid model, comprising mouse melanoma cells, and the exposure and subsequent irradiation with UV-light, yielded similar results to the 2D cell culture. The process of apoptosis was found to be targeted and mediated by the lysosomal membrane permeabilization. Therefore, the herein presented polydopamine/protein NPs constitute a versatile and stable system for cancer cell-targeting and photothermal apoptosis induction.
AUTHOR
Title
Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines
[Abstract]
Year
2018
Journal/Proceedings
Carbohydrate Polymers
Reftype
Groups
AbstractNeural tissue engineering (TE), an innovative biomedical method of brain study, is very dependent on scaffolds that support cell development into a functional tissue. Recently, 3D patterned scaffolds for neural TE have shown significant positive effects on cells by a more realistic mimicking of actual neural tissue. In this work, we present a conductive nanocellulose-based ink for 3D printing of neural TE scaffolds. It is demonstrated that by using cellulose nanofibrils and carbon nanotubes as ink constituents, it is possible to print guidelines with a diameter below 1 mm and electrical conductivity of 3.8 × 10−1 S cm−1. The cell culture studies reveal that neural cells prefer to attach, proliferate, and differentiate on the 3D printed conductive guidelines. To our knowledge, this is the first research effort devoted to using cost-effective cellulosic 3D printed structures in neural TE, and we suppose that much more will arise in the near future.
AUTHOR
Title
Collagen Density Gradient on 3D Printed Poly(ε-Caprolactone) Scaffolds for Interface Tissue Engineering
Year
2017
Journal/Proceedings
Journal of tissue engineering and regenerative medicine
Reftype
DOI/URL
DOI