REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Chitosan
Matching entries: 5 /5
All Groups
AUTHOR Puertas-Bartolomé, María and Włodarczyk-Biegun, Małgorzata K. and del Campo, Aránzazu and Vázquez-Lasa, Blanca and San Román, Julio
Title Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing. Thus, NPs wound healing promoting activities, potential for drug encapsulation and controlled release, and further incorporation in a hydrogel bioink formulation to fabricate cell-laden 3D scaffolds are studied. NPs with 2 and 29 M % catechol contents (named NP2 and NP29) were obtained by nanoprecipitation and presented hydrodynamic diameters of 100 and 75 nm respectively. These nanocarriers encapsulated the hydrophobic compound coumarin-6 with 70% encapsulation efficiency values. In cell culture studies, the NPs had a protective effect in RAW 264.7 macrophages against oxidative stress damage induced by radical oxygen species (ROS). They also presented a regulatory effect on the inflammatory response of stimulated macrophages and promoted upregulation of the vascular endothelial growth factor (VEGF) in fibroblasts and endothelial cells. In particular, NP29 were used in a hydrogel bioink formulation using carboxymethyl chitosan and hyaluronic acid as polymeric matrices. Using a reactive mixing bioprinting approach, NP-loaded hydrogel scaffolds with good structural integrity, shape fidelity and homogeneous NPs dispersion, were obtained. The in vitro catechol NPs release profile of the printed scaffolds revealed a sustained delivery. The bioprinted scaffolds supported viability and proliferation of encapsulated L929 fibroblasts over 14 days. We envision that the catechol functionalized NPs and resulting bioactive bioink presented in this work offer promising advantages for wound healing applications, as they: 1) support controlled release of bioactive catechol NPs to the wound site; 2) can incorporate additional therapeutic functions by co-encapsulating drugs; 3) can be printed into 3D scaffolds with tailored geometries based on patient requirements.
AUTHOR Kamdem Tamo, Arnaud and Doench, Ingo and Walter, Lukas and Montembault, Alexandra and Sudre, Guillaume and David, Laurent and Morales-Helguera, Aliuska and Selig, Mischa and Rolauffs, Bernd and Bernstein, Anke and Hoenders, Daniel and Walther, Andreas and Osorio-Madrazo, Anayancy
Title Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL DOI
Abstract
Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable from hard tissues by their low mineral and high water content. In this work, we proposed the development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose nanofibers (CNFs), both without any chemical modification, which processing did not incorporate any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new strategies for the design of environmentally friendly high mechanical performance composites. In the here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing (EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low concentrations of chitosan (2.0–3.0% (w/v)) and cellulose nanofibers (0.2–0.4% (w/v)). CHI/CNF printed hydrogels with good mechanical performance (Young’s modulus 3.0 MPa, stress at break 1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D printability, resolution, and quality of the constructs (microstructure and mechanical properties), resulting in good cell viability. This work allows expanding the library of the so far used biopolymer compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.
AUTHOR Alison, Lauriane and Menasce, Stefano and Bouville, Florian and Tervoort, Elena and Mattich, Iacopo and Ofner, Alessandro and Studart, André R.
Title 3D printing of sacrificial templates into hierarchical porous materials [Abstract]
Year 2019
Journal/Proceedings Scientific Reports
Reftype Alison2019
DOI/URL DOI
Abstract
Hierarchical porous materials are widespread in nature and find an increasing number of applications as catalytic supports, biological scaffolds and lightweight structures. Recent advances in additive manufacturing and 3D printing technologies have enabled the digital fabrication of porous materials in the form of lattices, cellular structures and foams across multiple length scales. However, current approaches do not allow for the fast manufacturing of bulk porous materials featuring pore sizes that span broadly from macroscopic dimensions down to the nanoscale. Here, ink formulations are designed and investigated to enable 3D printing of hierarchical materials displaying porosity at the nano-, micro- and macroscales. Pores are generated upon removal of nanodroplets and microscale templates present in the initial ink. Using particles to stabilize the droplet templates is key to obtain Pickering nanoemulsions that can be 3D printed through direct ink writing. The combination of such self-assembled templates with the spatial control offered by the printing process allows for the digital manufacturing of hierarchical materials exhibiting thus far inaccessible multiscale porosity and complex geometries.
AUTHOR Sommer, Marianne R. and Alison, Lauriane and Minas, Clara and Tervoort, Elena and Ruhs, Patrick A. and Studart, Andre R.
Title 3D printing of concentrated emulsions into multiphase biocompatible soft materials [Abstract]
Year 2017
Journal/Proceedings Soft Matter
Reftype
DOI/URL DOI
Abstract
3D printing via direct ink writing (DIW) is a versatile additive manufacturing approach applicable to a variety of materials ranging from ceramics over composites to hydrogels. Due to the mild processing conditions compared to other additive manufacturing methods{,} DIW enables the incorporation of sensitive compounds such as proteins or drugs into the printed structure. Although emulsified oil-in-water systems are commonly used vehicles for such compounds in biomedical{,} pharmaceutical{,} and cosmetic applications{,} printing of such emulsions into architectured soft materials has not been fully exploited and would open new possibilities for the controlled delivery of sensitive compounds. Here{,} we 3D print concentrated emulsions into soft materials{,} whose multiphase architecture allows for site-specific incorporation of both hydrophobic and hydrophilic compounds into the same structure. As a model ink{,} concentrated emulsions stabilized by chitosan-modified silica nanoparticles are studied{,} because they are sufficiently stable against coalescence during the centrifugation step needed to create a bridging network of droplets. The resulting ink is ideal for 3D printing as it displays high yield stress{,} storage modulus and elastic recovery{,} through the formation of networks of droplets as well as of gelled silica nanoparticles in the presence of chitosan. To demonstrate possible architectures{,} we print biocompatible soft materials with tunable hierarchical porosity containing an encapsulated hydrophobic compound positioned in specific locations of the structure. The proposed emulsion-based ink system offers great flexibility in terms of 3D shaping and local compositional control{,} and can potentially help address current challenges involving the delivery of incompatible compounds in biomedical applications.
AUTHOR Ng, Wei Long and Yeong, Wai Yee and Naing, May Win
Title Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering [Abstract]
Year 2016
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Bioprinting is a promising automated platform that enables the simultaneous deposition of multiple types of cells and biomaterials to fabricate complex three-dimensional (3D) tissue constructs. Most of the previous bioprinting works focused on collagen-based biomaterial, which has poor printability and long crosslinking time. This posed a immerse challenge to create a 3D construct with pre-determined shape and configuration. There is a need for a functional material with good printability in order to fabricate a 3D skin construct. Recently, the use of chitosan for wound healing applications has attracted huge attention due to its attractive traits such as its antimicrobial properties and ability to trigger hemostasis. In this paper, we report the modification of chitosan-based biomaterials for functional 3D bioprinting. Modification to the chitosan was carried out via the oppositely charged functional groups from chitosan and gelatin at a specific pH of ~pH 6.5 to form polyelectrolyte complexes. The polyelectrolyte hydrogels were evaluated in terms of chemical interactions within polymer blend, rheological properties (viscosities, storage and loss modulus), printing resolution at varying pressures and feed rates and biocompatibility. The chitosan-based hydrogels formulated in this work exhibited good printability at room temperature, high shape fidelity of the printed 3D constructs and good biocompatibility with fibroblast skin cells.