APPLICATION NOTES
BROCHURES / DOCUMENTATION
SCIENTIFIC PUBLICATIONS
You are researching: University of Nantes
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
Cell Type
All Groups
- Printing Technology
- Biomaterial
- Ceramics
- Metals
- Bioinks
- Fibronectin
- Xanthan Gum
- Paeoniflorin
- Methacrylated Silk Fibroin
- Heparin
- Fibrinogen
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Carrageenan
- Chitosan
- Glycerol
- Poly(glycidol)
- Agarose
- methacrylated chondroitin sulfate (CSMA)
- Silk Fibroin
- Methacrylated hyaluronic acid (HAMA)
- Gellan Gum
- Alginate
- Gelatin-Methacryloyl (GelMA)
- Cellulose
- Hyaluronic Acid
- Polyethylene glycol (PEG) based
- Collagen
- Gelatin
- Novogel
- Peptide gel
- α-Bioink
- Elastin
- Matrigel
- Methacrylated Chitosan
- Pectin
- Pyrogallol
- Fibrin
- Methacrylated Collagen (CollMA)
- Glucosamine
- Non-cellularized gels/pastes
- 2-hydroxyethyl) methacrylate (HEMA)
- Paraffin
- Polyphenylene Oxide
- Acrylamide
- SEBS
- Ionic Liquids
- Jeffamine
- Mineral Oil
- Salecan
- Zein
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- Polyvinylpyrrolidone (PVP)
- Salt-based
- Acrylates
- 2-hydroxyethyl-methacrylate (HEMA)
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Polyethylene
- Silicone
- Pluronic – Poloxamer
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Phenylacetylene
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- Polyisobutylene
- Konjac Gum
- Gelatin-Sucrose Matrix
- Chlorella Microalgae
- Poly(Vinyl Formal)
- Thermoplastics
- Micro/nano-particles
- Biological Molecules
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Review Paper
- Application
- Tissue Models – Drug Discovery
- BioSensors
- Personalised Pharmaceuticals
- In Vitro Models
- Bioelectronics
- Industrial
- Robotics
- Medical Devices
- Electronics – Robotics – Industrial
- Biomaterial Processing
- Tissue and Organ Biofabrication
- Liver tissue Engineering
- Muscle Tissue Engineering
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Vascularization
- Skin Tissue Engineering
- Drug Delivery
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Discovery
- Institution
- Myiongji University
- Hong Kong University
- Veterans Administration Medical Center
- University of Applied Sciences Northwestern Switzerland
- University of Michigan, Biointerfaces Institute
- Sree Chitra Tirunal Institute
- Kaohsiung Medical University
- Baylor College of Medicine
- L'Oreal
- University of Bordeaux
- KU Leuven
- Abu Dhabi University
- University of Sheffield
- DTU – Technical University of Denmark
- Hefei University
- Rice University
- University of Barcelona
- INM – Leibniz Institute for New Materials
- University of Nantes
- Institute for Bioengineering of Catalonia (IBEC)
- University of Amsterdam
- Bayreuth University
- Ghent University
- National University of Singapore
- Adolphe Merkle Institute Fribourg
- Zurich University of Applied Sciences (ZHAW)
- Hallym University
- University of Wurzburg
- AO Research Institute (ARI)
- Chalmers University of Technology
- ETH Zurich
- Nanyang Technological University
- Utrecht Medical Center (UMC)
- University of Manchester
- University of Nottingham
- Trinity College
- National Institutes of Health (NIH)
- Rizzoli Orthopaedic Institute
- University of Bucharest
- Innotere
- Nanjing Medical University
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Queen Mary University
- Royal Free Hospital
- SINTEF
- University of Central Florida
- University of Freiburg
- Halle-Wittenberg University
- CIC biomaGUNE
- Chiao Tung University
- University of Geneva
- Novartis
- Karlsruhe institute of technology
- Shanghai University
- Technical University of Dresden
- University of Michigan – School of Dentistry
- University of Tel Aviv
- Aschaffenburg University
- Univerity of Hong Kong
- Chinese Academy of Sciences
- Helmholtz Institute for Pharmaceutical Research Saarland
- Brown University
- Innsbruck University
- National Yang Ming Chiao Tung University
- Tiangong University
- Harbin Institute of Technology
- Montreal University
- Anhui Polytechnic
- Jiao Tong University
- University of Toronto
- Politecnico di Torino
- Biomaterials & Bioinks
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- Organoids
- Meniscus Cells
- Skeletal Muscle-Derived Cells (SkMDCs)
- Hepatocytes
- Monocytes
- Neutrophils
- Macrophages
- Corneal Stromal Cells
- Mesothelial cells
- Adipocytes
- Synoviocytes
- Human Trabecular Meshwork Cells
- Epithelial
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Spheroids
- Keratinocytes
- Neurons
- Endothelial
- CardioMyocites
- Osteoblasts
- Articular cartilage progenitor cells (ACPCs)
- Cancer Cell Lines
- Chondrocytes
- Fibroblasts
- Myoblasts
- Melanocytes
- Retinal
- Embrionic Kidney (HEK)
- β cells
- Pericytes
- Bacteria
- Tenocytes
- Stem Cells
AUTHOR
Title
Quantifying Oxygen Levels in 3D Bioprinted Cell-Laden Thick Constructs with Perfusable Microchannel Networks
[Abstract]
Year
2020
Journal/Proceedings
Polymers
Reftype
Groups
AbstractThe survival and function of thick tissue engineered implanted constructs depends on pre-existing, embedded, functional, vascular-like structures that are able to integrate with the host vasculature. Bioprinting was employed to build perfusable vascular-like networks within thick constructs. However, the improvement of oxygen transportation facilitated by these vascular-like networks was directly quantified. Using an optical fiber oxygen sensor, we measured the oxygen content at different positions within 3D bioprinted constructs with and without perfusable microchannel networks. Perfusion was found to play an essential role in maintaining relatively high oxygen content in cell-laden constructs and, consequently, high cell viability. The concentration of oxygen changes following switching on and off the perfusion. Oxygen concentration depletes quickly after pausing perfusion but recovers rapidly after resuming the perfusion. The quantification of oxygen levels within cell-laden hydrogel constructs could provide insight into channel network design and cellular responses.