You are researching: Attapulgite
Matching entries: 2 /2
All Groups
AUTHOR Liu, Chun and Dai, Ting and Wu, Xiaoyu and Ma, Jiayi and Liu, Jun and Wu, Siyu and Yang, Lei and Zhao, Hongbin
Title 3D bioprinting of cell-laden nano-attapulgite/gelatin methacrylate composite hydrogel scaffolds for bone tissue repair [Abstract]
Year 2023
Journal/Proceedings Journal of Materials Science & Technology
Bone tissue engineering (BTE) has proven to be a promising strategy for bone defect repair. Due to its excellent biological properties, gelatin methacrylate (GelMA) hydrogels have been used as bioinks for 3D bioprinting in some BTE studies to produce scaffolds for bone regeneration. However, applications for load-bearing defects are limited by poor mechanical properties and a lack of bioactivity. In this study, 3D printing technology was used to create nano-attapulgite (nano-ATP)/GelMA composite hydrogels loaded into mouse bone mesenchymal stem cells (BMSCs) and mouse umbilical vein endothelial cells (MUVECs). The bioprintability, physicochemical properties, and mechanical properties were all thoroughly evaluated. Our findings showed that nano-ATP groups outperform the control group in terms of printability, indicating that nano-ATP is beneficial for printability. Additionally, after incorporation with nano-ATP, the mechanical strength of the composite hydrogels was significantly improved, resulting in adequate mechanical properties for bone regeneration. The presence of nano-ATP in the scaffolds has also been studied for cell-material interactions. The findings show that cells within the scaffold not only have high viability but also a clear proclivity to promote osteogenic differentiation of BMSCs. Besides, the MUVECs-loaded composite hydrogels demonstrated increased angiogenic activity. A cranial defect model was also developed to evaluate the bone repair capability of scaffolds loaded with rat BMSCs. According to histological analysis, cell-laden nano-ATP composite hydrogels can effectively improve bone regeneration and promote angiogenesis. This study demonstrated the potential of nano-ATP for bone tissue engineering, which should also increase the clinical practicality of nano-ATP.
AUTHOR Wang, Zehao and Hui, Aiping and Zhao, Hongbin and Ye, Xiaohan and Zhang, Chao and Wang, Aiqin and Zhang, Changqing
Title A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings International Journal of Nanomedicine
BACKGROUND: Natural clay nanomaterials are an emerging class of biomaterial with great potential for tissue engineering and regenerative medicine applications, most notably for osteogenesis. MATERIALS AND METHODS: Herein, for the first time, novel tissue engineering scaffolds were prepared by 3D bioprinter using nontoxic and bioactive natural attapulgite (ATP) nanorods as starting materials, with polyvinyl alcohol as binder, and then sintered to obtain final scaffolds. The microscopic morphology and structure of ATP particles and scaffolds were observed by transmission electron microscope and scanning electron microscope. In vitro biocompatibility and osteogenesis with osteogenic precursor cell (hBMSCs) were assayed using MTT method, Live/Dead cell staining, alizarin red staining and RT-PCR. In vivo bone regeneration was evaluated with micro-CT and histology analysis in rat cranium defect model. RESULTS: We successfully printed a novel porous nano-ATP scaffold designed with inner channels with a dimension of 500 µm and wall structures with a thickness of 330 µm. The porosity of current 3D-printed scaffolds ranges from 75% to 82% and the longitudinal compressive strength was up to 4.32±0.52 MPa. We found firstly that nano-ATP scaffolds with excellent biocompatibility for hBMSCscould upregulate the expression of osteogenesis-related genes bmp2 and runx2 and calcium deposits in vitro. Interestingly, micro-CT and histology analysis revealed abundant newly formed bone was observed along the defect margin, even above and within the 3D bioprinted porous ATP scaffolds in a rat cranial defect model. Furthermore, histology analysis demonstrated that bone was formed directly following a process similar to membranous ossification without any intermediate cartilage formation and that many newly formed blood vessels are within the pores of 3D-printed scaffolds at four and eight weeks. CONCLUSION: These results suggest that the 3D-printed porous nano-ATP scaffolds are promising candidates for bone tissue engineering by osteogenesis and angiogenesis.