REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Myoblasts
Matching entries: 13 /13
All Groups
AUTHOR Laternser, Sandra and Keller, Hansjoerg and Leupin, Olivier and Rausch, Martin and Graf-Hausner, Ursula and Rimann, Markus
Title A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues [Abstract]
Year 2018
Journal/Proceedings SLAS TECHNOLOGY: Translating Life Sciences Innovation
Reftype
DOI/URL DOI
Abstract
Two-dimensional (2D) cell cultures do not reflect the in vivo situation, and thus it is important to develop predictive three-dimensional (3D) in vitro models with enhanced reliability and robustness for drug screening applications. Treatments against muscle-related diseases are becoming more prominent due to the growth of the aging population worldwide. In this study, we describe a novel drug screening platform with automated production of 3D musculoskeletal-tendon-like tissues. With 3D bioprinting, alternating layers of photo-polymerized gelatin-methacryloyl-based bioink and cell suspension tissue models were produced in a dumbbell shape onto novel postholder cell culture inserts in 24-well plates. Monocultures of human primary skeletal muscle cells and rat tenocytes were printed around and between the posts. The cells showed high viability in culture and good tissue differentiation, based on marker gene and protein expressions. Different printing patterns of bioink and cells were explored and calcium signaling with Fluo4-loaded cells while electrically stimulated was shown. Finally, controlled co-printing of tenocytes and myoblasts around and between the posts, respectively, was demonstrated followed by co-culture and co-differentiation. This screening platform combining 3D bioprinting with a novel microplate represents a promising tool to address musculoskeletal diseases.
AUTHOR Lee, Jia Min and Yeong, Wai Yee
Title Engineering macroscale cell alignment through coordinated toolpath design using support-assisted 3D bioprinting [Abstract]
Year 2020
Journal/Proceedings Journal of The Royal Society Interface
Reftype
DOI/URL DOI
Abstract
Aligned cells provide direction-dependent mechanical properties that influence biological and mechanical function in native tissues. Alignment techniques such as casting and uniaxial stretching cannot fully replicate the complex fibre orientation of native tissue such as the heart. In this study, bioprinting is used to direct the orientation of cell alignment. A 0°–90° grid structure was printed to assess the robustness of the support-assisted bioprinting technique. The variation in the angles of the grid pattern is designed to mimic the differences in fibril orientation of native tissues, where angles of cell alignment vary across the different layers. Through bioprinting of a cell–hydrogel mixture, C2C12 cells displayed directed alignment along the longitudinal axis of printed struts. Cell alignment is induced through firstly establishing structurally stable constructs (i.e. distinct 0°–90° structures) and secondly, allowing cells to dynamically remodel the bioprinted construct. Herein reports a method of inducing a macroscale level of controlled cell alignment with angle variation. This was not achievable both in terms of methods (i.e. conventional alignment techniques such as stretching and electrical stimulation) and magnitude (i.e. hydrogel features with less than 100 µm features).
AUTHOR Li, Huijun and Tan, Yu Jun and Kiran, Raj and Tor, Shu Beng and Zhou, Kun
Title Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose [Abstract]
Year 2020
Journal/Proceedings Additive Manufacturing
Reftype
DOI/URL URL DOI
Abstract
The extrusion-based bioprinting of hydrogels such as gelatin methacrylate (GelMA) into structures with complex shape suffers from poor printability due to their low viscosity. The present study deals with hydrogel materials by using the mixture of cell-laden photopolymerizable GelMA as a main printing material and the mixture of alginate and methylcellulose (Alg/MC) as a support material because of its high viscosity and good thixotropic property. One extrusion-based approach is developed by printing the two mixtures into structures in an alternating layer-by-layer manner, with the electrostatic interactions between polycationic GelMA and polyanionic Alg/MC contributing to the integrity of the structures. The final printed structures are exposed to ultraviolet (UV) light to form crosslinks in GelMA through photopolymerization for further structural strengthening. The one-time UV exposure minimizes cell damage in cell-GelMA, demonstrating an advantage over those in previously reported studies that required repeated UV exposures upon the printing of each layer of a structure. The other approach is developed by submerging the extrusion nozzle into a bath of Alg/MC to print cell-laden GelMA structures, which, upon printing completion, are also subject to one-time UV exposure before the removal of the support material Alg/MC. A flower with living cells is printed to demonstrate the capability of the second approach of fabricating structures with geometric complexity. The structures printed using both approaches demonstrate a well-maintained shape fidelity, structural integrity and cell viability of over 93% up to five culturing days. The proposed two printing approaches based on the cell-GelMA and Alg/MC pair will be beneficial for exploring new opportunities in bioprinting.
AUTHOR Mestre, Rafael and Patiño, Tania and Barceló, Xavier and Anand, Shivesh and Pérez-Jiménez, Ariadna and Sánchez, Samuel
Title Force Modulation and Adaptability of 3D-Bioprinted Biological Actuators Based on Skeletal Muscle Tissue [Abstract]
Year 2019
Journal/Proceedings Advanced Materials Technologies
Reftype
DOI/URL DOI
Abstract
Abstract The integration of biological systems into robotic devices might provide them with capabilities acquired from natural systems and significantly boost their performance. These abilities include real-time bio-sensing, self-organization, adaptability, or self-healing. As many muscle-based bio-hybrid robots and bio-actuators arise in the literature, the question of whether these features can live up to their expectations becomes increasingly substantial. Herein, the force generation and adaptability of skeletal-muscle-based bio-actuators undergoing long-term training protocols are analyzed. The 3D-bioprinting technique is used to fabricate bio-actuators that are functional, responsive, and have highly aligned myotubes. The bio-actuators are 3D-bioprinted together with two artificial posts, allowing to use it as a force measuring platform. In addition, the force output evolution and dynamic gene expression of the bio-actuators are studied to evaluate their degree of adaptability according to training protocols of different frequencies and mechanical stiffness, finding that their force generation could be modulated to different requirements. These results shed some light into the fundamental mechanisms behind the adaptability of muscle-based bio-actuators and highlight the potential of using 3D bioprinting as a rapid and cost-effective tool for the fabrication of custom-designed soft bio-robots.
AUTHOR Zhuang, Pei and Ng, Wei Long and An, Jia and Chua, Chee Kai and Tan, Lay Poh
Title Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications [Abstract]
Year 2019
Journal/Proceedings PLOS ONE
Reftype
DOI/URL DOI
Abstract
One of the major challenges in the field of soft tissue engineering using bioprinting is fabricating complex tissue constructs with desired structure integrity and mechanical property. To accomplish such requirements, most of the reported works incorporated reinforcement materials such as poly(ϵ-caprolactone) (PCL) polymer within the 3D bioprinted constructs. Although this approach has made some progress in constructing soft tissue-engineered scaffolds, the mechanical compliance mismatch and long degradation period are not ideal for soft tissue engineering. Herein, we present a facile bioprinting strategy that combines the rapid extrusion-based bioprinting technique with an in-built ultraviolet (UV) curing system to facilitate the layer-by-layer UV curing of bioprinted photo-curable GelMA-based hydrogels to achieve soft yet stable cell-laden constructs with high aspect ratio for soft tissue engineering. GelMA is supplemented with a viscosity enhancer (gellan gum) to improve the bio-ink printability and shape fidelity while maintaining the biocompatibility before crosslinking via a layer-by-layer UV curing process. This approach could eventually fabricate soft tissue constructs with high aspect ratio (length to diameter) of ≥ 5. The effects of UV source on printing resolution and cell viability were also studied. As a proof-of-concept, small building units (3D lattice and tubular constructs) with high aspect ratio are fabricated. Furthermore, we have also demonstrated the ability to perform multi-material printing of tissue constructs with high aspect ratio along both the longitudinal and transverse directions for potential applications in tissue engineering of soft tissues. This layer-by-layer ultraviolet assisted extrusion-based (UAE) Bioprinting may provide a novel strategy to develop soft tissue constructs with desirable structure integrity.
AUTHOR Zhou, Miaomiao and Lee, Bae Hoon and Tan, Yu Jun and Tan, Lay Poh
Title Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing [Abstract]
Year 2019
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Gelatin methacryloyl (GelMA) is a versatile biomaterial that has been shown to possess many advantages such as good biocompatibility, support for cell growth, tunable mechanical properties, photocurable capability, and low material cost. Due to these superior properties, much research has been carried out to develop GelMA as a bioink for bioprinting. However, there are still many challenges, and one major challenge is the control of its rheological properties to yield good printability. Herein, this study presents a strategy to control the rheology of GelMA through partial enzymatic crosslinking. Unlike other enzymatic crosslinking strategies where the rheological properties could not be controlled once reaction takes place, we could, to a large extent, keep the rheological properties stable by introducing a deactivation step after obtaining the optimized rheological properties. Ca2+-independent microbial transglutaminase (MTGase) was introduced to partially catalyze covalent bond formation between chains of GelMA. The enzyme was then deactivated to prevent further uncontrolled crosslinking that would render the hydrogel not printable. After printing, a secondary post-printing crosslinking step (photo crosslinking) was then introduced to ensure long-term stability of the printed structure for subsequent cell studies. Biocompatibility studies carried out using cells encapsulated in the printed structure showed excellent cell viability for at least 7 d. This strategy for better control of rheological properties of GelMA could more significantly enhance the usability of this material as bioink for bioprinting of cell-laden structures for soft tissue engineering.
AUTHOR Agarwala, Shweta and Lee, Jia Min and Ng, Wei Long and Layani, Michael and Yeong, Wai Yee and Magdassi, Shlomo
Title A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform [Abstract]
Year 2018
Journal/Proceedings Biosensors and Bioelectronics
Reftype
DOI/URL URL DOI
Abstract
Abstract Bioelectronics platforms are gaining widespread attention as they provide a template to study the interactions between biological species and electronics. Decoding the effect of the electrical signals on the cells and tissues holds the promise for treating the malignant tissue growth, regenerating organs and engineering new-age medical devices. This work is a step forward in this direction, where bio- and electronic materials co-exist on one platform without any need for post processing. We fabricate a freestanding and flexible hydrogel based platform using 3D bioprinting. The fabrication process is simple, easy and provides a flexible route to print materials with preferred shapes, size and spatial orientation. Through the design of interdigitated electrodes and heating coil, the platform can be tailored to print various circuits for different functionalities. The biocompatibility of the printed platform is tested using C2C12 murine myoblasts cell line. Furthermore, normal human dermal fibroblasts (primary cells) are also seeded on the platform to ascertain the compatibility.
AUTHOR Tognato, Riccardo and Armiento, Angela R. and Bonfrate, Valentina and Levato, Riccardo and Malda, Jos and Alini, Mauro and Eglin, David and Giancane, Gabriele and Serra, Tiziano
Title A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics [Abstract]
Year 2018
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Stimuli-responsive materials have the potential to enable the generation of new bioinspired devices with unique physicochemical properties and cell-instructive ability. Enhancing biocompatibility while simplifying the production methodologies, as well as enabling the creation of complex constructs, i.e., via 3D (bio)printing technologies, remains key challenge in the field. Here, a novel method is presented to biofabricate cellularized anisotropic hybrid hydrogel through a mild and biocompatible process driven by multiple external stimuli: magnetic field, temperature, and light. A low-intensity magnetic field is used to align mosaic iron oxide nanoparticles (IOPs) into filaments with tunable size within a gelatin methacryloyl matrix. Cells seeded on top or embedded within the hydrogel align to the same axes of the IOPs filaments. Furthermore, in 3D, C2C12 skeletal myoblasts differentiate toward myotubes even in the absence of differentiation media. 3D printing of the nanocomposite hydrogel is achieved and creation of complex heterogeneous structures that respond to magnetic field is demonstrated. By combining the advanced, stimuli-responsive hydrogel with the architectural control provided by bioprinting technologies, 3D constructs can also be created that, although inspired by nature, express functionalities beyond those of native tissue, which have important application in soft robotics, bioactuators, and bionic devices.
AUTHOR Li, Huijun and Tan, Yu Jun and Li, Lin
Title A strategy for strong interface bonding by 3D bioprinting of oppositely charged κ-carrageenan and gelatin hydrogels [Abstract]
Year 2018
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL
Abstract
A promising approach for improving the interfacial bonding of a three-dimensionally (3D) printed multilayered structure has been investigated by taking advantage of the electrostatic interactions between two hydrogels with oppositely charges. Here, two hydrogels namely gelatin and κ-carrageenan, which are the cationic and anionic hydrogels respectively, are used. It is found that the interfacial bonding strength between these two oppositely charged hydrogels is significantly higher than that of a bilayered gelatin or a bilayered κ-carrageenan. The bioprinted multilayered κ-carrageenan-gelatin hydrogel construct demonstrates a very good biocompatibility and a good structure integrity at 37 °C. Our strategy also overcomes the limitation of using gelatin for bio-fabrication at 37 °C, without further post crosslinking.
AUTHOR Fortunato, Gabriele Maria and Maria, Carmelo De and Eglin, David and Serra, Tiziano and Vozzi, Giovanni
Title An ink-jet printed electrical stimulation platform for muscle tissue regeneration [Abstract]
Year 2018
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Conducting polymeric materials have been used to modulate response of cells seeded on their surfaces. However, there is still major improvement to be made related to their biocompatibility, conductivity, stability in biological milieu, and processability toward truly tissue engineered functional device. In this work, conductive polymer, poly(3,4-ethylene-dioxythiophene):polystyrene-sulfonate (PEDOT:PSS), and its possible applications in tissue engineering were explored. In particular PEDOT:PSS solution was inkjet printed onto a gelatin substrate for obtaining a conductive structure. Mechanical and electrical characterizations, structural stability by swelling and degradation tests were carried out on different PEDOT-based samples obtained by varying the number of printed PEDOT layers from 5 to 50 on gelatin substrate. Biocompatibility of substrates was investigated on C2C12 myoblasts, through metabolic activity assay and imaging analysis during a 7-days culture period, to assess cell morphology, differentiation and alignment. The results of this first part allowed to proceed with the second part of the study in which these substrates were used for the design of an electrical stimulation device, with the aim of providing the external stimulus (3 V amplitude square wave at 1 and 2 Hz frequency) to guide myotubes alignment and enhance differentiation, having in this way promising applications in the field of muscle tissue engineering.
AUTHOR García-Lizarribar, Andrea and Fernández-Garibay, Xiomara and Velasco-Mallorquí, Ferran and G. Castaño, Albert and Samitier, Josep and Ramón-Azcón, Javier
Title Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue
Year 2018
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
AUTHOR Li, Huijun and Tan, Yu Jun and Liu, Sijun and Li, Lin
Title Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding [Abstract]
Year 2018
Journal/Proceedings ACS Applied Materials and Interfaces
Reftype
DOI/URL DOI
Abstract
A novel strategy to improve the adhesion between printed layers of three-dimensional (3D) printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels [alginate, xanthan, and κ-carrageenan (Kca)] and three cationic hydrogels [chitosan, gelatin, and gelatin methacrylate (GelMA)] are chosen to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and the combination of hydrogels. Kca2 (2 wt % Kca hydrogel) and GelMA10 (10 wt % GelMA hydrogel) are found to be the best combination of oppositely charged hydrogels for 3D printing. The interfacial bonding between a Kca layer and a GelMA layer is proven to be significantly higher than that of the bilayered Kca or bilayered GelMA because of the formation of polyelectrolyte complexes between the oppositely charged hydrogels. A good cell viability of >96% is obtained for the 3D-bioprinted Kca–GelMA construct. This novel strategy has a great potential for 3D bioprinting of layered constructs with a strong interface bonding.
AUTHOR Baumann, Bernhard and Jungst, Tomasz and Stichler, Simone and Feineis, Susanne and Wiltschka, Oliver and Kuhlmann, Matthias and Lindén, Mika and Groll, Jürgen
Title Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds [Abstract]
Year 2017
Journal/Proceedings Angewandte Chemie International Edition
Reftype
DOI/URL DOI
Abstract
The convergence of biofabrication with nanotechnology is largely unexplored but enables geometrical control of cell-biomaterial arrangement combined with controlled drug delivery and release. As a step towards integration of these two fields of research, this study demonstrates that modulation of electrostatic nanoparticle–polymer and nanoparticle–nanoparticle interactions can be used for tuning nanoparticle release kinetics from 3D printed hydrogel scaffolds. This generic strategy can be used for spatiotemporal control of the release kinetics of nanoparticulate drug vectors in biofabricated constructs.