SCIENTIFIC PUBLICATIONS

You are researching: Matrigel
Matching entries: 9 /9
All Groups
AUTHOR Ainsworth, Madison Jade and Chirico, Nino and de Ruijter, Mylène and Hrynevich, Andrei and Dokter, Inge and Sluijter, Joost P. G. and Malda, Jos and van Mil, Alain and Castilho, Miguel
Title Convergence of melt electrowriting and extrusion-based bioprinting for vascular patterning of a myocardial construct [Abstract]
Year 2023
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
To progress cardiac tissue engineering strategies closer to the clinic, thicker constructs are required to meet the functional need following a cardiac event. Consequently, pre-vascularization of these constructs needs to be investigated to ensure survival and optimal performance of implantable engineered heart tissue. The aim of this research is to investigate the potential of combining extrusion-based bioprinting (EBB) and melt electrowriting for the fabrication of a myocardial construct with a precisely patterned pre-vascular pathway. Gelatin methacryloyl (GelMA) was investigated as a base hydrogel for the respective myocardial and vascular bioinks with collagen, Matrigel and fibrinogen as interpenetrating polymers to support myocardial functionality. Subsequently, extrusion-based printability and viability were investigated to determine the optimal processing parameters for printing into melt electrowritten meshes. Finally, an anatomically inspired vascular pathway was implemented in a dual EBB set-up into melt electrowritten meshes, creating a patterned pre-vascularized myocardial construct. It was determined that a blend of 5% GelMA and 0.8 mg·ml−1 collagen with a low crosslinked density was optimal for myocardial cellular arrangement and alignment within the constructs. For the vascular fraction, the optimized formulation consisted of 5% GelMA, 0.8 mg·ml−1 collagen and 1 mg·ml−1 fibrinogen with a higher crosslinked density, which led to enhanced vascular cell connectivity. Printability assessment confirmed that the optimized bioinks could effectively fill the microfiber mesh while supporting cell viability (∼70%). Finally, the two bioinks were applied using a dual EBB system for the fabrication of a pre-vascular pathway with the shape of a left anterior descending artery within a myocardial construct, whereby the distinct cell populations could be visualized in their respective patterns up to D14. This research investigated the first step towards developing a thick engineered cardiac tissue construct in which a pre-vascularization pathway is fabricated within a myocardial construct.
AUTHOR D'Agostino, Stefania and Rimann, Markus and Gamba, Piergiorgio and Perilongo, Giorgio and Pozzobon, Michela and Raghunath, Michael
Title Macromolecular crowding tuned extracellular matrix deposition in a bioprinted human rhabdomyosarcoma model [Abstract]
Year 2022
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The role of the extracellular matrix (ECM) in tumor recurrence and metastasis has been gaining attention. Indeed, not only cellular, but also structural proteins influence migratory and invasive capacity of tumor cells, including growth and resistance to drugs. Therefore, new in vitro tumor models that entail improved ECM formation and deposition are needed. Here, we are developed three-dimensional (3D) models of pediatric soft tissue sarcoma (Rhabdomyosarcoma [RMS]) with the two major subgroups, the embryonal (ERMS) and the alveolar (ARMS) form. We applied macromolecular crowding (MMC) technology to monolayer cultures, spheroids, and 3D bioprinted constructs. In all culture models, exposure to MMC significantly increased ECM deposition. Interestingly, bioprinted constructs showed a collagen and fibronectin matrix architecture that was comparable to that of tumor xenografts. Furthermore, the bioprinted model not only showed tumor cell growth inside the structure but also displayed cell clusters leaving the edges of the bioprinted construct, probably emulating a metastatic mechanism. ARMS and ERMS cells reacted differently in the bioprinted structure. Indeed, the characteristic metastatic behavior was much more pronounced in the more aggressive ARMS subtype. This promising approach opens new avenues for studying RMS microenvironment and creating a platform for cancer drug testing including the native tumor ECM.
AUTHOR Alave Reyes-Furrer, Angela and De Andrade, Sonia and Bachmann, Dominic and Jeker, Heidi and Steinmann, Martin and Accart, Nathalie and Dunbar, Andrew and Rausch, Martin and Bono, Epifania and Rimann, Markus and Keller, Hansjoerg
Title Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses [Abstract]
Year 2021
Journal/Proceedings Communications Biology
Reftype Alave Reyes-Furrer2021
DOI/URL DOI
Abstract
A key to enhance the low translatability of preclinical drug discovery are in vitro human three-dimensional (3D) microphysiological systems (MPS). Here, we show a new method for automated engineering of 3D human skeletal muscle models in microplates and functional compound screening to address the lack of muscle wasting disease medication. To this end, we adapted our recently described 24-well plate 3D bioprinting platform with a printhead cooling system to allow microvalve-based drop-on-demand printing of cell-laden Matrigel containing primary human muscle precursor cells. Mini skeletal muscle models develop within a week exhibiting contractile, striated myofibers aligned between two attachment posts. As an in vitro exercise model, repeated high impact stimulation of contractions for 3 h by a custom-made electrical pulse stimulation (EPS) system for 24-well plates induced interleukin-6 myokine expression and Akt hypertrophy pathway activation. Furthermore, the known muscle stimulators caffeine and Tirasemtiv acutely increase EPS-induced contractile force of the models. This validated new human muscle MPS will benefit development of drugs against muscle wasting diseases. Moreover, our Matrigel 3D bioprinting platform will allow engineering of non-self-organizing complex human 3D MPS.
AUTHOR Saghar Soman, Soja and Govindraj, Mano and Al Hashimi, Noura and Zhou, Jiarui and Vijayavenkataraman, Sanjairaj
Title Bioprinting of Human Neural Tissues Using a Sustainable Marine Tunicate-Derived Bioink for Translational Medicine Applications [Abstract]
Year 2022
Journal/Proceedings International Journal of Bioprinting; Vol 8, No 4 (2022)DO - 10.18063/ijb.v8i4.604
Reftype
DOI/URL URL
Abstract
Bioprinting of nervous tissue is a major challenge in the bioprinting field due to its soft consistency and complex architecture. The first step in efficient neural bioprinting is the design and optimization of printable bioinks which favor the growth and differentiation of neural tissues by providing the mechanophysiological properties of the native tissue microenvironment. However, till date, limited studies have been conducted to make tissue specific bioinks. Here, we report a novel bioink formulation specifically designed for bioprinting and differentiation of neural stem cells (NSCs) to peripheral neurons, using a marine tunicate-derived hydrogel and Matrigel. The formulation resulted in seamless bioprinting of NSCs with minimal processing time from bioink preparation to in vitro culture. The tissues exhibited excellent post-printing viability and cell proliferation along with a precise peripheral nerve morphology on in vitro differentiation. The cultured tissues showed significant cell recovery after subjecting to a freeze-thaw cycle of −80 to 37°C, indicating the suitability of the method for developing tissues compatible for long-term storage and transportation for clinical use. The study provides a robust method to use a sustainable bioink for three-dimensional bioprinting of neural tissues for translational medicine applications.
AUTHOR Saghar Soman, Soja and Govindraj, Mano and Al Hashimi, Noura and Zhou, Jiarui and Vijayavenkataraman, Sanjairaj
Title Bioprinting of Human Neural Tissues Using a Sustainable Marine Tunicate-Derived Bioink for Translational Medicine Applications [Abstract]
Year 2022
Journal/Proceedings International Journal of Bioprinting; Vol 8, No 4 (2022)DO - 10.18063/ijb.v8i4.604
Reftype
DOI/URL URL
Abstract
Bioprinting of nervous tissue is a major challenge in the bioprinting field due to its soft consistency and complex architecture. The first step in efficient neural bioprinting is the design and optimization of printable bioinks which favor the growth and differentiation of neural tissues by providing the mechanophysiological properties of the native tissue microenvironment. However, till date, limited studies have been conducted to make tissue specific bioinks. Here, we report a novel bioink formulation specifically designed for bioprinting and differentiation of neural stem cells (NSCs) to peripheral neurons, using a marine tunicate-derived hydrogel and Matrigel. The formulation resulted in seamless bioprinting of NSCs with minimal processing time from bioink preparation to in vitro culture. The tissues exhibited excellent post-printing viability and cell proliferation along with a precise peripheral nerve morphology on in vitro differentiation. The cultured tissues showed significant cell recovery after subjecting to a freeze-thaw cycle of −80 to 37°C, indicating the suitability of the method for developing tissues compatible for long-term storage and transportation for clinical use. The study provides a robust method to use a sustainable bioink for three-dimensional bioprinting of neural tissues for translational medicine applications.
AUTHOR Saghar Soman, Soja and Govindraj, Mano and Al Hashimi, Noura and Zhou, Jiarui and Vijayavenkataraman, Sanjairaj
Title Bioprinting of Human Neural Tissues Using a Sustainable Marine Tunicate-Derived Bioink for Translational Medicine Applications [Abstract]
Year 2022
Journal/Proceedings International Journal of Bioprinting; Vol 8, No 4 (2022)DO - 10.18063/ijb.v8i4.604
Reftype
DOI/URL URL
Abstract
Bioprinting of nervous tissue is a major challenge in the bioprinting field due to its soft consistency and complex architecture. The first step in efficient neural bioprinting is the design and optimization of printable bioinks which favor the growth and differentiation of neural tissues by providing the mechanophysiological properties of the native tissue microenvironment. However, till date, limited studies have been conducted to make tissue specific bioinks. Here, we report a novel bioink formulation specifically designed for bioprinting and differentiation of neural stem cells (NSCs) to peripheral neurons, using a marine tunicate-derived hydrogel and Matrigel. The formulation resulted in seamless bioprinting of NSCs with minimal processing time from bioink preparation to in vitro culture. The tissues exhibited excellent post-printing viability and cell proliferation along with a precise peripheral nerve morphology on in vitro differentiation. The cultured tissues showed significant cell recovery after subjecting to a freeze-thaw cycle of −80 to 37°C, indicating the suitability of the method for developing tissues compatible for long-term storage and transportation for clinical use. The study provides a robust method to use a sustainable bioink for three-dimensional bioprinting of neural tissues for translational medicine applications.
AUTHOR Saghar Soman, Soja and Govindraj, Mano and Al Hashimi, Noura and Zhou, Jiarui and Vijayavenkataraman, Sanjairaj
Title Bioprinting of Human Neural Tissues Using a Sustainable Marine Tunicate-Derived Bioink for Translational Medicine Applications [Abstract]
Year 2022
Journal/Proceedings International Journal of Bioprinting; Vol 8, No 4 (2022)DO - 10.18063/ijb.v8i4.604
Reftype
DOI/URL URL
Abstract
Bioprinting of nervous tissue is a major challenge in the bioprinting field due to its soft consistency and complex architecture. The first step in efficient neural bioprinting is the design and optimization of printable bioinks which favor the growth and differentiation of neural tissues by providing the mechanophysiological properties of the native tissue microenvironment. However, till date, limited studies have been conducted to make tissue specific bioinks. Here, we report a novel bioink formulation specifically designed for bioprinting and differentiation of neural stem cells (NSCs) to peripheral neurons, using a marine tunicate-derived hydrogel and Matrigel. The formulation resulted in seamless bioprinting of NSCs with minimal processing time from bioink preparation to in vitro culture. The tissues exhibited excellent post-printing viability and cell proliferation along with a precise peripheral nerve morphology on in vitro differentiation. The cultured tissues showed significant cell recovery after subjecting to a freeze-thaw cycle of −80 to 37°C, indicating the suitability of the method for developing tissues compatible for long-term storage and transportation for clinical use. The study provides a robust method to use a sustainable bioink for three-dimensional bioprinting of neural tissues for translational medicine applications.
AUTHOR Šimková, Kateřina and Thormann, Ursula and Imanidis, Georgios
Title Investigation of drug dissolution and uptake from low-density DPI formulations in an impactor–integrated cell culture model [Abstract]
Year 2020
Journal/Proceedings European Journal of Pharmaceutics and Biopharmaceutics
Reftype
DOI/URL URL DOI
Abstract
Besides deposition, pulmonary bioavailability is determined by dissolution of particles in the scarce epithelial fluid and by cellular API uptake. In the present work, we have developed an experimental in vitro model, which is combining the state-of-the-art next generation impactor (NGI), used for aerodynamic performance assessment of inhalation products, with a culture of human alveolar A549 epithelial cells to study the fate of inhaled drugs following lung deposition. The goal was to investigate five previously developed nano-milled and spray-dried budesonide formulations and to examine the suitability of the in vitro test model. The NGI dissolution cups of stages 3, 4, and 5 were transformed to accommodate cell culture inserts while assuring minimal interference with the air flow. A549 cells were cultivated at the air–liquid interface on Corning® Matrigel® -coated inserts. After deposition of aerodynamically classified powders on the cell cultures, budesonide amount was determined on the cell surface, in the interior of the cell monolayer, and in the basal solution for four to eight hours. Significant differences in the total deposited drug amount and the amount remaining on the cell surface at the end of the experiment were found between different formulations and NGI stages. Roughly 50% of budesonide was taken up by the cells and converted to a large extent to its metabolic conjugate with oleic acid for all formulations and stages. Prolonged time required for complete drug dissolution and cell uptake in case of large deposited powder amounts suggested initial drug saturation of the surfactant layer of the cell surface. Discrimination between formulations with respect to time scale of dissolution and cell uptake was possible with the present test model providing useful insights into the biopharmaceutical performance of developed formulations that may be relevant for predicting local bioavailability. The absolute quantitative result of cell uptake and permeation into the systemic compartment is unreliable, though, because of partly compromised cell membrane integrity due to particle impaction and professed leakiness of A549 monolayer tight junctions, respectively.
AUTHOR Horvath, Lenke and Umehara, Yuki and Jud, Corinne and Blank, Fabian and Petri-Fink, Alke and Rothen-Rutishauser, Barbara
Title Engineering an in vitro air-blood barrier by 3D bioprinting. [Abstract]
Year 2015
Journal/Proceedings Scientific reports
Reftype
DOI/URL URL
Abstract
Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing.