REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Phenylacetylene
Matching entries: 1 /1
All Groups
AUTHOR Rupp, Harald and Binder, Wolfgang H.
Title Multicomponent Stress-Sensing Composites Fabricated by 3D-Printing Methodologies [Abstract]
Year 2020
Journal/Proceedings Macromolecular Rapid Communications
Reftype
DOI/URL DOI
Abstract
Abstract The preparation and characterization of mechanoresponsive, 3D-printed composites are reported using a dual-printing setup for both, liquid dispensing and fused-deposition-modeling. The here reported stress-sensing materials are based on high- and low molecular weight mechanophores, including poly(ε-caprolactone)-, polyurethane-, and alkyl(C11)-based latent copper(I)bis(N-heterocyclic carbenes), which can be activated by compression to trigger a fluorogenic, copper(I)-catalyzed azide/alkyne “click”-reaction of an azide-functionalized fluorescent dye inside a bulk polymeric material. Focus is placed on the printability and postprinting activity of the latent mechanophores and the fluorogenic “click”-components. The multicomponent specimen containing both, azide and alkyne, are manufactured via a 3D-printer to place the components separately inside the specimen into void spaces generated during the FDM-process, which subsequently are filled with liquids using a separate liquid dispenser, located within the same 3D-printing system. The low-molecular weight mechanophores bearing the alkyl-C11 chains display the best printability, yielding a mechanochemical response after the 3D-printing process.