TUTORIALS / DOCUMENTATIONS
USE CASES / WHITE PAPERS / WEBINARS
SCIENTIFIC PUBLICATIONS
You are researching: Polyisobutylene
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Bioprinting Technologies
- Biomaterials & Bioinks
- Cell Type
- Stem Cells
- Chondrocytes
- Fibroblasts
- Myoblasts
- Cancer Cell Lines
- Articular cartilage progenitor cells (ACPCs)
- Osteoblasts
- Epithelial
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Spheroids
- Keratinocytes
- Neurons
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Embrionic Kidney (HEK)
- β cells
- Pericytes
- Bacteria
- Tenocytes
- Organoids
- Meniscus Cells
- Skeletal Muscle-Derived Cells (SkMDCs)
- Macrophages
- Bioprinting Applications
- Institution
- ETH Zurich
- Nanyang Technological University
- Utrecht Medical Center (UMC)
- University of Manchester
- University of Nottingham
- Trinity College
- Chalmers University of Technology
- AO Research Institute (ARI)
- University of Wurzburg
- Institute for Bioengineering of Catalonia (IBEC)
- University of Amsterdam
- Bayreuth University
- Ghent University
- National University of Singapore
- Adolphe Merkle Institute Fribourg
- Zurich University of Applied Sciences (ZHAW)
- Hallym University
- National Institutes of Health (NIH)
- Rizzoli Orthopaedic Institute
- University of Bucharest
- University of Geneva
- Novartis
- Karlsruhe institute of technology
- Shanghai University
- Technical University of Dresden
- University of Michigan – School of Dentistry
- University of Tel Aviv
- Aschaffenburg University
- Chiao Tung University
- CIC biomaGUNE
- Halle-Wittenberg University
- Innotere
- Nanjing Medical University
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Queen Mary University
- Royal Free Hospital
- SINTEF
- University of Central Florida
- University of Freiburg
- Univerity of Hong Kong
- University of Nantes
- Myiongji University
- University of Applied Sciences Northwestern Switzerland
- University of Michigan, Biointerfaces Institute
- Sree Chitra Tirunal Institute
- Kaohsiung Medical University
- Baylor College of Medicine
- L'Oreal
- University of Bordeaux
- KU Leuven
- Veterans Administration Medical Center
- Hong Kong University
- University of Barcelona
- Rice University
- Hefei University
- Abu Dhabi University
- University of Sheffield
- DTU – Technical University of Denmark
- INM – Leibniz Institute for New Materials
- Innsbruck University
- Review Paper
- Printing Technology
- Biomaterial
- Thermoplastics
- Ceramics
- Metals
- Bioinks
- Alginate
- Gelatin-Methacryloyl (GelMA)
- Cellulose
- Hyaluronic Acid
- Polyethylene glycol (PEG) based
- Collagen
- Gelatin
- Gellan Gum
- Methacrylated hyaluronic acid (HAMA)
- Silk Fibroin
- Fibrinogen
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Carrageenan
- Chitosan
- Glycerol
- Poly(glycidol)
- Agarose
- methacrylated chondroitin sulfate (CSMA)
- Novogel
- Peptide gel
- α-Bioink
- Elastin
- Matrigel
- Methacrylated Chitosan
- Pectin
- Pyrogallol
- Fibrin
- Methacrylated Collagen (CollMA)
- Glucosamine
- Non-cellularized gels/pastes
- Gelatin-Sucrose Matrix
- Chlorella Microalgae
- Poly(Vinyl Formal)
- Phenylacetylene
- 2-hydroxyethyl) methacrylate (HEMA)
- Paraffin
- Polyphenylene Oxide
- Jeffamine
- Pluronic – Poloxamer
- Silicone
- Polyvinylpyrrolidone (PVP)
- Salt-based
- Acrylates
- 2-hydroxyethyl-methacrylate (HEMA)
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Polyethylene
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- Polyisobutylene
- Konjac Gum
- Micro/nano-particles
- Biological Molecules
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Application
- Biomaterial Processing
- Drug Discovery
- Electronics – Robotics – Industrial
- BioSensors
- Personalised Pharmaceuticals
- Tissue Models – Drug Discovery
- Tissue and Organ Biofabrication
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Delivery
- Vascularization
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Skin Tissue Engineering
AUTHOR
Title
3D Printing of Supramolecular Polymers: Impact of Nanoparticles and Phase Separation on Printability
[Abstract]
Year
2019
Journal/Proceedings
Macromolecular Rapid Communications
Reftype
DOI/URL
DOI
Groups
AbstractAbstract 3D printing of linear and three-arm star supramolecular polymers with attached hydrogen bonds and their nanocomposites is reported. The concept is based on hydrogen-bonded supramolecular polymers, known to form nano-sized micellar clusters. Printability is based on reversible thermal- and shear-induced dissociation of a supramolecular polymer network, which generates stable and self-supported structures after printing, as checked via melt-rheology and X-ray scattering. The linear and three-arm star poly(isobutylene)s PIB-B2 (Mn = 8500 g mol −1), PIB-B3 (Mn = 16 000 g mol −1), and linear poly(ethylene glycol)s PEG-B2 (Mn = 900 g mol−1, 8500 g mol −1) are prepared and then probed by melt-rheology to adjust the viscosity to address the proper printing window. The supramolecular PIB polymers show a rubber-like behavior and are able to form self-supported 3D printed objects at room temperature and below, reaching polymer strand diameters down to 200–300 µm. Nanocomposites of PIB-B2 with silica nanoparticles (12 nm, 5–15 wt%) are generated, in turn leading to an improvement of their shape persistence. A blend of the linear polymer PIB-B2 and the three-arm star polymer PIB-B3 (ratio ≈ 3/1 mol) reaches an even higher structural stability, able to build free-standing structures.