You are researching: Ocular Tissue Engineering
Matching entries: 2 /2
All Groups
AUTHOR Wang, Ruiqi and Deng, Shuai and Wu, Yuping and Wei, Haiying and Jing, Guangping and Zhang, Bosong and Liu, Fengzhen and Tian, Hui and Chen, Xiongbiao and Tian, Weiming
Title Remodelling 3D printed GelMA-HA corneal scaffolds by cornea stromal cells [Abstract]
Year 2022
Journal/Proceedings Colloid and Interface Science Communications
Engineering scaffolds with a structure mimicking that of native cornea allows for addressing the severe donor shortage for the corneal blindness treatment, which, however, remains challenging. In the light that corneal stromal (CS) cells can play a key role in corneal stroma formation, in this study we incorporated CS cells into three-dimensional (3D) scaffolds printed from hyaluronic acid-modified gelatin-methacrylate (GelMA-HA) scaffolds and characterized the scaffolds in terms of remodeled extracellular matrix (ECM) in vitro. Our results illustrated that the modification of GelMA by HA allowed for 3D printing of corneal scaffolds and further improved the characteristics of primary rabbit-derived corneal stromal cells for remodelling scaffolds. After 60 days, we decellularized the remodeled corneal scaffolds and examined their optical properties; and our results demonstrated that the 3D printed corneal scaffolds provided CS cells with cues that guided them toward the directional and spatial organization and facilitated the ECM remodelling.
AUTHOR Fenton, Owen S. and Paolini, Marion and Andresen, Jason L. and Müller, Florence J. and Langer, Robert
Title Outlooks on Three-Dimensional Printing for Ocular Biomaterials Research [Abstract]
Year 2019
Journal/Proceedings Journal of Ocular Pharmacology and Therapeutics
Abstract Given its potential for high-resolution, customizable, and waste-free fabrication of medical devices and in vitro biological models, 3-dimensional (3D) bioprinting has broad utility within the biomaterials field. Indeed, 3D bioprinting has to date been successfully used for the development of drug delivery systems, the recapitulation of hard biological tissues, and the fabrication of cellularized organ and tissue-mimics, among other applications. In this study, we highlight convergent efforts within engineering, cell biology, soft matter, and chemistry in an overview of the 3D bioprinting field, and we then conclude our work with outlooks toward the application of 3D bioprinting for ocular research in vitro and in vivo.