SCIENTIFIC PUBLICATIONS

You are researching: Neuroblastoma
Matching entries: 6 /6
All Groups
AUTHOR Nothdurfter, Daniel and Ploner, Christian and Coraça-Huber, Débora C. and Wilflingseder, Doris and Müller, Thomas and Hermann, Martin and Hagenbuchner, Judith and Ausserlechner, Michael J.
Title 3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing [Abstract]
Year 2022
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Neuroblastoma is an extracranial solid tumor which develops in early childhood and still has a poor prognosis. One strategy to increase cure rates is the identification of patient-specific drug responses in tissue models that mimic the interaction between patient cancer cells and tumor environment. We therefore developed a perfused and micro-vascularized tumor-environment model that is directly bioprinted into custom-manufactured fluidic chips. A gelatin-methacrylate/fibrin-based matrix containing multiple cell types mimics the tumor-microenvironment that promotes spontaneous micro-vessel formation by embedded endothelial cells. We demonstrate that both, adipocyte- and iPSC-derived mesenchymal stem cells can guide this process. Bioprinted channels are coated with endothelial cells post printing to form a dense vessel - tissue barrier. The tissue model thereby mimics structure and function of human soft tissue with endothelial cell-coated larger vessels for perfusion and micro-vessel networks within the hydrogel-matrix. Patient-derived neuroblastoma spheroids are added to the matrix during the printing process and grown for more than two weeks. We demonstrate that micro-vessels are attracted by and grow into tumor spheroids and that neuroblastoma cells invade the tumor-environment as soon as the spheroids disrupt. In summary, we describe the first bioprinted, micro-vascularized neuroblastoma – tumor-environment model directly printed into fluidic chips and a novel medium-throughput biofabrication platform suitable for studying tumor angiogenesis and metastasis in precision medicine approaches in future.
AUTHOR Monferrer, Ezequiel and Martín-Vañó, Susana and Carretero, Aitor and García-Lizarribar, Andrea and Burgos-Panadero, Rebeca and Navarro, Samuel and Samitier, Josep and Noguera, Rosa
Title A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior [Abstract]
Year 2020
Journal/Proceedings Scientific Reports
Reftype Monferrer2020
DOI/URL DOI
Abstract
Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young’s modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
AUTHOR Li, Jianfeng and Reimers, Armin and Dang, Ka My and Brunk, Michael G. K. and Drewes, Jonas and Hirsch, Ulrike M. and Willems, Christian and Schmelzer, Christian E. H. and Groth, Thomas and Nia, Ali Shaygan and Feng, Xinliang and Adelung, Rainer and Sacher, Wesley D. and Schütt, Fabian and Poon, Joyce K. S.
Title 3D printed neural tissues with in situ optical dopamine sensors [Abstract]
Year 2023
Journal/Proceedings Biosensors and Bioelectronics
Reftype
DOI/URL URL DOI
Abstract
Engineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 μM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.
AUTHOR Mungenast, Lena and Nieminen, Ronya and Gaiser, Carine and Faia-Torres, Ana Bela and Rühe, Jürgen and Suter-Dick, Laura
Title Electrospun decellularized extracellular matrix scaffolds promote the regeneration of injured neurons [Abstract]
Year 2023
Journal/Proceedings Biomaterials and Biosystems
Reftype
DOI/URL URL DOI
Abstract
Traumatic injury to the spinal cord (SCI) causes the transection of neurons, formation of a lesion cavity, and remodeling of the microenvironment by excessive extracellular matrix (ECM) deposition and scar formation leading to a regeneration-prohibiting environment. Electrospun fiber scaffolds have been shown to simulate the ECM and increase neural alignment and neurite outgrowth contributing to a growth-permissive matrix. In this work, electrospun ECM-like fibers providing biochemical and topological cues are implemented into a scaffold to represent an oriented biomaterial suitable for the alignment and migration of neural cells in order to improve spinal cord regeneration. The successfully decellularized spinal cord ECM (dECM), with no visible cell nuclei and dsDNA content < 50 ng/mg tissue, showed preserved ECM components, such as glycosaminoglycans and collagens. Serving as the biomaterial for 3D printer-assisted electrospinning, highly aligned and randomly distributed dECM fiber scaffolds (< 1 µm fiber diameter) were fabricated. The scaffolds were cytocompatible and supported the viability of a human neural cell line (SH-SY5Y) for 14 days. Cells were selectively differentiated into neurons, as confirmed by immunolabeling of specific cell markers (ChAT, Tubulin ß), and followed the orientation given by the dECM scaffolds. After generating a lesion site on the cell-scaffold model, cell migration was observed and compared to reference poly-ε-caprolactone fiber scaffolds. The aligned dECM fiber scaffold promoted the fastest and most efficient lesion closure, indicating superior cell guiding capabilities of dECM-based scaffolds. The strategy of combining decellularized tissues with controlled deposition of fibers to optimize biochemical and topographical cues opens the way for clinically relevant central nervous system scaffolding solutions.
AUTHOR López-Carrasco, Amparo and Martín-Vañó, Susana and Burgos-Panadero, Rebeca and Monferrer, Ezequiel and Berbegall, Ana P. and Fernández-Blanco, Beatriz and Navarro, Samuel and Noguera, Rosa
Title Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuroblastoma cell line [Abstract]
Year 2020
Journal/Proceedings Journal of Experimental & Clinical Cancer Research
Reftype López-Carrasco2020
DOI/URL DOI
Abstract
Increased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible.
AUTHOR Kuzmenko, Volodymyr and Karabulut, Erdem and Pernevik, Elin and Enoksson, Peter and Gatenholm, Paul
Title Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines [Abstract]
Year 2018
Journal/Proceedings Carbohydrate Polymers
Reftype
DOI/URL URL DOI
Abstract
Neural tissue engineering (TE), an innovative biomedical method of brain study, is very dependent on scaffolds that support cell development into a functional tissue. Recently, 3D patterned scaffolds for neural TE have shown significant positive effects on cells by a more realistic mimicking of actual neural tissue. In this work, we present a conductive nanocellulose-based ink for 3D printing of neural TE scaffolds. It is demonstrated that by using cellulose nanofibrils and carbon nanotubes as ink constituents, it is possible to print guidelines with a diameter below 1 mm and electrical conductivity of 3.8 × 10−1 S cm−1. The cell culture studies reveal that neural cells prefer to attach, proliferate, and differentiate on the 3D printed conductive guidelines. To our knowledge, this is the first research effort devoted to using cost-effective cellulosic 3D printed structures in neural TE, and we suppose that much more will arise in the near future.