TUTORIALS / DOCUMENTATIONS
USE CASES / WHITE PAPERS / WEBINARS
SCIENTIFIC PUBLICATIONS
You are researching: PEDOT
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Application
- Tissue Models – Drug Discovery
- Tissue and Organ Biofabrication
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Delivery
- Skin Tissue Engineering
- Vascularization
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Biomaterial Processing
- Drug Discovery
- Electronics – Robotics – Industrial
- BioSensors
- Personalised Pharmaceuticals
- Bioprinting Technologies
- Biomaterials & Bioinks
- Cell Type
- Organoids
- Meniscus Cells
- Skeletal Muscle-Derived Cells (SkMDCs)
- Macrophages
- Corneal Stromal Cells
- Stem Cells
- Chondrocytes
- Fibroblasts
- Myoblasts
- Cancer Cell Lines
- Articular cartilage progenitor cells (ACPCs)
- Osteoblasts
- Epithelial
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Spheroids
- Keratinocytes
- Neurons
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Embrionic Kidney (HEK)
- β cells
- Pericytes
- Bacteria
- Tenocytes
- Bioprinting Applications
- Institution
- University of Barcelona
- Rice University
- Hefei University
- Abu Dhabi University
- University of Sheffield
- DTU – Technical University of Denmark
- INM – Leibniz Institute for New Materials
- Innsbruck University
- Montreal University
- Harbin Institute of Technology
- ETH Zurich
- Nanyang Technological University
- Utrecht Medical Center (UMC)
- University of Manchester
- University of Nottingham
- Trinity College
- Chalmers University of Technology
- AO Research Institute (ARI)
- University of Wurzburg
- Institute for Bioengineering of Catalonia (IBEC)
- University of Amsterdam
- Bayreuth University
- Ghent University
- National University of Singapore
- Adolphe Merkle Institute Fribourg
- Zurich University of Applied Sciences (ZHAW)
- Hallym University
- National Institutes of Health (NIH)
- Rizzoli Orthopaedic Institute
- University of Bucharest
- University of Geneva
- Novartis
- Karlsruhe institute of technology
- Shanghai University
- Technical University of Dresden
- University of Michigan – School of Dentistry
- University of Tel Aviv
- Aschaffenburg University
- Chiao Tung University
- CIC biomaGUNE
- Halle-Wittenberg University
- Innotere
- Nanjing Medical University
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Queen Mary University
- Royal Free Hospital
- SINTEF
- University of Central Florida
- University of Freiburg
- Univerity of Hong Kong
- University of Nantes
- Myiongji University
- University of Applied Sciences Northwestern Switzerland
- University of Michigan, Biointerfaces Institute
- Sree Chitra Tirunal Institute
- Kaohsiung Medical University
- Baylor College of Medicine
- L'Oreal
- University of Bordeaux
- KU Leuven
- Veterans Administration Medical Center
- Hong Kong University
- Review Paper
- Printing Technology
- Biomaterial
- Thermoplastics
- Bioinks
- Xanthan Gum
- Paeoniflorin
- Alginate
- Gelatin-Methacryloyl (GelMA)
- Cellulose
- Hyaluronic Acid
- Polyethylene glycol (PEG) based
- Collagen
- Gelatin
- Gellan Gum
- Methacrylated hyaluronic acid (HAMA)
- Silk Fibroin
- Fibrinogen
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Carrageenan
- Chitosan
- Glycerol
- Poly(glycidol)
- Agarose
- methacrylated chondroitin sulfate (CSMA)
- Novogel
- Peptide gel
- α-Bioink
- Elastin
- Matrigel
- Methacrylated Chitosan
- Pectin
- Pyrogallol
- Fibrin
- Methacrylated Collagen (CollMA)
- Glucosamine
- Non-cellularized gels/pastes
- Jeffamine
- Mineral Oil
- Pluronic – Poloxamer
- Silicone
- Polyvinylpyrrolidone (PVP)
- Salt-based
- Acrylates
- 2-hydroxyethyl-methacrylate (HEMA)
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Polyethylene
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- Polyisobutylene
- Konjac Gum
- Gelatin-Sucrose Matrix
- Chlorella Microalgae
- Poly(Vinyl Formal)
- Phenylacetylene
- 2-hydroxyethyl) methacrylate (HEMA)
- Paraffin
- Polyphenylene Oxide
- Micro/nano-particles
- Biological Molecules
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Ceramics
- Metals
AUTHOR
Title
Electro-assisted printing of soft hydrogels via controlled electrochemical reactions
[Abstract]
Year
2022
Journal/Proceedings
Nature Communications
Reftype
Da Silva2022
DOI/URL
DOI
Groups
AbstractHydrogels underpin many applications in tissue engineering, cell encapsulation, drug delivery and bioelectronics. Methods improving control over gelation mechanisms and patterning are still needed. Here we explore a less-known gelation approach relying on sequential electrochemical-chemical-chemical (ECC) reactions. An ionic species and/or molecule in solution is oxidised over a conductive surface at a specific electric potential. The oxidation generates an intermediate species that reacts with a macromolecule, forming a hydrogel at the electrode-electrolyte interface. We introduce potentiostatic control over this process, allowing the selection of gelation reactions and control of hydrogel growth rate. In chitosan and alginate systems, we demonstrate precipitation, covalent and ionic gelation mechanisms. The method can be applied in the polymerisation of hybrid systems consisting of more than one polymer. We demonstrate concomitant deposition of the conductive polymer Poly(3,4-ethylenedioxythiophene) (PEDOT) and alginate. Deposition of the hydrogels occurs in small droplets held between a conductive plate (working electrode, WE), a printing nozzle (counter electrode, CE) and a pseudoreference electrode (reference electrode, RE). We install this setup on a commercial 3D printer to demonstrate patterning of adherent hydrogels on gold and flexible ITO foils. Electro-assisted printing may contribute to the integration of well-defined hydrogels on hybrid electronic-hydrogel devices for bioelectronics applications.
AUTHOR
Year
2019
Journal/Proceedings
Small
Reftype
DOI/URL
DOI
Groups
AbstractAbstract Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain–machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m−1, stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.
AUTHOR
Year
2018
Journal/Proceedings
Bioprinting
Reftype
Groups
AbstractConducting polymeric materials have been used to modulate response of cells seeded on their surfaces. However, there is still major improvement to be made related to their biocompatibility, conductivity, stability in biological milieu, and processability toward truly tissue engineered functional device. In this work, conductive polymer, poly(3,4-ethylene-dioxythiophene):polystyrene-sulfonate (PEDOT:PSS), and its possible applications in tissue engineering were explored. In particular PEDOT:PSS solution was inkjet printed onto a gelatin substrate for obtaining a conductive structure. Mechanical and electrical characterizations, structural stability by swelling and degradation tests were carried out on different PEDOT-based samples obtained by varying the number of printed PEDOT layers from 5 to 50 on gelatin substrate. Biocompatibility of substrates was investigated on C2C12 myoblasts, through metabolic activity assay and imaging analysis during a 7-days culture period, to assess cell morphology, differentiation and alignment. The results of this first part allowed to proceed with the second part of the study in which these substrates were used for the design of an electrical stimulation device, with the aim of providing the external stimulus (3 V amplitude square wave at 1 and 2 Hz frequency) to guide myotubes alignment and enhance differentiation, having in this way promising applications in the field of muscle tissue engineering.