SCIENTIFIC PUBLICATIONS

You are researching: Osteosarcoma
Matching entries: 3 /3
All Groups
AUTHOR Pellegrini, Evelin and Desando, Giovanna and Petretta, Mauro and Cellamare, Antonella and Cristalli, Camilla and Pasello, Michela and Manara, Maria Cristina and Grigolo, Brunella and Scotlandi, Katia
Title A 3D Collagen-Based Bioprinted Model to Study Osteosarcoma Invasiveness and Drug Response [Abstract]
Year 2022
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The biological and therapeutic limits of traditional 2D culture models, which only partially mimic the complexity of cancer, have recently emerged. In this study, we used a 3D bioprinting platform to process a collagen-based hydrogel with embedded osteosarcoma (OS) cells. The human OS U-2 OS cell line and its resistant variant (U-2OS/CDDP 1 μg) were considered. The fabrication parameters were optimized to obtain 3D printed constructs with overall morphology and internal microarchitecture that accurately match the theoretical design, in a reproducible and stable process. The biocompatibility of the 3D bioprinting process and the chosen collagen bioink in supporting OS cell viability and metabolism was confirmed through multiple assays at short- (day 3) and long- (day 10) term follow-ups. In addition, we tested how the 3D collagen-based bioink affects the tumor cell invasive capabilities and chemosensitivity to cisplatin (CDDP). Overall, we developed a new 3D culture model of OS cells that is easy to set up, allows reproducible results, and better mirrors malignant features of OS than flat conditions, thus representing a promising tool for drug screening and OS cell biology research.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bártolo, Paulo
Title Novel Poly(ɛ-caprolactone)/Graphene Scaffolds for Bone Cancer Treatment and Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Scaffold-based bone tissue engineering is the most relevant approach for critical-sized bone defects. It is based on the use of three-dimensional substrates to provide the appropriate biomechanical environment for bone regeneration. Despite some successful results previously reported, scaffolds were never designed for disease treatment applications. This article proposes a novel dual-functional scaffold for cancer applications, comprising both treatment and regeneration functions. These functions are achieved by combining a biocompatible and biodegradable polymer and graphene. Results indicate that high concentrations of graphene enhance the mechanical properties of the scaffolds, also increasing the inhibition on cancer cell viability and proliferation.
AUTHOR D'Amora, Ugo and D'Este, Matteo and Eglin, David and Safari, Fatemeh and Sprecher, Christoph and Gloria, Antonio and De Santis, Roberto and Alini, Mauro and Ambrosio, Luigi
Title Collagen Density Gradient on 3D Printed Poly(ε-Caprolactone) Scaffolds for Interface Tissue Engineering
Year 2017
Journal/Proceedings Journal of tissue engineering and regenerative medicine
Reftype
DOI/URL DOI