SCIENTIFIC PUBLICATIONS

You are researching: Karlsruhe institute of technology
Matching entries: 8 /8
All Groups
AUTHOR Strauß, Svenja and Schroth, Bianca and Hubbuch, Jürgen
Title Evaluation of the Reproducibility and Robustness of Extrusion-Based Bioprinting Processes Applying a Flow Sensor [Abstract]
Year 2022
Journal/Proceedings Frontiers in bioengineering and biotechnology
Reftype
DOI/URL URL DOI
Abstract
Bioprinting is increasingly regarded as a suitable additive manufacturing method in biopharmaceutical process development and formulation. In order to manage the leap from research to industrial application, higher levels of reproducibility and a standardized bioprinting process are prerequisites. This said, the concept of process analytical technologies, standard in the biopharmaceutical industry, is still at its very early steps. To date most extrusion-based printing processes are controlled over penumatic pressure and thus not adaptive to environmental or system related changes over several experimental runs. A constant set pressure applied over a number of runs, might lead to variations in flow rate and thus to unreliable printed constructs. With this in mind, the simple question arises whether a printing process based on a set flow rate could improve reproduciblity and transfer to different printing systems. The control and monitoring of flow rate aim to introduce the concept of PAT in the field of bioprinting. This study investigates the effect of different processing modes (set pressure vs. set flow rate) on printing reproducibility occurring during an extrusion-based printing process consisting of 6 experimental runs consisting of 3 printed samples each. Additionally, the influence of different filling levels of the ink containing cartridge during a printing process was determined. Different solutions based on a varying amount of alginate polymer and Kolliphor hydrogels in varying concentrations showed the need for individual setting of printing parameter. To investigate parameter transferability among different devices two different printers were used and the flow was monitored using a flow sensor attached to the printing unit. It could be demonstrated that a set flow rate controlled printing process improved accuracy and the filling level also affects the accuracy of printing, the magnitude of this effects varies as the cartridge level declined. The transferability between printed devices was eased by setting the printing parameters according to a set flow rate of each bioink disregarding the value of the set pressure. Finally, by a bioprinting porcess control based on a set flow rate, the coefficient of variance for printed objects could be reduced from 0.2 to 0.02 for 10% (w/v) alginate polymer solutions.
AUTHOR Schmieg, Barbara and Gretzinger, Sarah and Schuhmann, Sebastian and Guthausen, Gisela and Hubbuch, Jürgen
Title Magnetic resonance imaging as a tool for quality control in extrusion-based bioprinting [Abstract]
Year 2022
Journal/Proceedings Biotechnology Journal
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting is gaining importance for the manufacturing of tailor-made hydrogel scaffolds in tissue engineering, pharmaceutical research and cell therapy. However, structure fidelity and geometric deviations of printed objects heavily influence mass transport and process reproducibility. Fast, three-dimensional and nondestructive quality control methods will be decisive for the approval in larger studies or industry. Magnetic resonance imaging (MRI) meets these requirements for characterizing heterogeneous soft materials with different properties. Complementary to the idea of decentralized 3D printing, magnetic resonance tomography is common in medicine, and image data processing tools can be transferred system-independently. In this study, a MRI measurement and image analysis protocol was evaluated to jointly assess the reproducibility of three different hydrogels and a reference material. Critical parameters for object quality, namely porosity, hole areas and deviations along the height of the scaffolds are discussed. Geometric deviations could be correlated to specific process parameters, anomalies of the ink or changes of ambient conditions. This strategy allows the systematic investigation of complex 3D objects as well as an implementation as a process control tool. Combined with the monitoring of metadata this approach might pave the way for future industrial applications of 3D printing in the field of biopharmaceutics.
AUTHOR Gretzinger, Sarah and Schmieg, Barbara and Guthausen, Gisela and Hubbuch, Jürgen
Title Virtual Reality as Tool for Bioprinting Quality Inspection: A Proof of Principle [Abstract]
Year 2022
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
As virtual reality (VR) has drastically evolved over the past few years, the field of applications of VR flourished way beyond the gaming industry. While commercial VR solutions might be available, there is a need to develop a workflow for specific applications. Bioprinting represents such an example. Here, complex 3D data is generated and needs to be visualized in the context of quality control. We demonstrate that the transfer to a commercially available VR software is possible by introducing an optimized workflow. In the present work, we developed a workflow for the visualization of the critical quality attribute (cQA) cell distribution in bioprinted (extrusion-based) samples in VR. The cQA cell distribution is directly influenced by the pre-processing step mixing of cell material in the bioink. Magnetic Resonance Imaging (MRI) was used as an analytical tool to generate spatially resolved 2.5 and 3D data of the bioprinted objects. A sample with poor quality in respect of the cQA cell distribution was identified as its inhomogeneous cell distribution could be displayed spatially resolved in VR. The described workflow facilitates the usage of VR as a tool for quality inspection in the field of bioprinting and represents a powerful tool for visualization of complex 3D MRI data.
AUTHOR Göckler, Tobias and Haase, Sonja and Kempter, Xenia and Pfister, Rebecca and Maciel, Bruna R. and Grimm, Alisa and Molitor, Tamara and Willenbacher, Norbert and Schepers, Ute
Title Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting [Abstract]
Year 2021
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Photocurable gelatin-based hydrogels have established themselves as powerful bioinks in tissue engineering due to their excellent biocompatibility, biodegradability, light responsiveness, thermosensitivity and bioprinting properties. While gelatin methacryloyl (GelMA) has been the gold standard for many years, thiol-ene hydrogel systems based on norbornene-functionalized gelatin (GelNB) and a thiolated crosslinker have recently gained increasing importance. In this paper, a highly reproducible water-based synthesis of GelNB is presented, avoiding the use of dimethyl sulfoxide (DMSO) as organic solvent and covering a broad range of degrees of functionalization (DoF: 20% to 97%). Mixing with thiolated gelatin (GelS) results in the superfast curing photoclick hydrogel GelNB/GelS. Its superior properties over GelMA, such as substantially reduced amounts of photoinitiator (0.03% (w/v)), superfast curing (1–2 s), higher network homogeneity, post-polymerization functionalization ability, minimal cross-reactivity with cellular components, and improved biocompatibility of hydrogel precursors and degradation products lead to increased survival of primary cells in 3D bioprinting. Post-printing viability analysis revealed excellent survival rates of > 84% for GelNB/GelS bioinks of varying crosslinking density, while cell survival for GelMA bioinks is strongly dependent on the DoF. Hence, the semisynthetic and easily accessible GelNB/GelS hydrogel is a highly promising bioink for future medical applications and other light-based biofabrication techniques.
AUTHOR Steier, Anke and Schmieg, Barbara and Irtel von Brenndorff, Yannic and Meier, Manuel and Nirschl, Hermann and Franzreb, Matthias and Lahann, Joerg
Title Enzyme Scaffolds with Hierarchically Defined Properties via 3D Jet Writing [Abstract]
Year 2020
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract The immobilization of enzymes into polymer hydrogels is a versatile approach to improve their stability and utility in biotechnological and biomedical applications. However, these systems typically show limited enzyme activity, due to unfavorable pore dimensions and low enzyme accessibility. Here, 3D jet writing of water-based bioinks, which contain preloaded enzymes, is used to prepare hydrogel scaffolds with well-defined, tessellated micropores. After 3D jet writing, the scaffolds are chemically modified via photopolymerization to ensure mechanical stability. Enzyme loading and activity in the hydrogel scaffolds is fully retained over 3 d. Important structural parameters of the scaffolds such as pore size, pore geometry, and wall diameter are controlled with micrometer resolution to avoid mass-transport limitations. It is demonstrated that scaffold pore sizes between 120 µm and 1 mm can be created by 3D jet writing approaching the length scales of free diffusion in the hydrogels substrates and resulting in high levels of enzyme activity (21.2% activity relative to free enzyme). With further work, a broad range of applications for enzyme-laden hydrogel scaffolds including diagnostics and enzymatic cascade reactions is anticipated.
AUTHOR Strauß, Svenja and Meutelet, Rafaela and Radosevic, Luka and Gretzinger, Sarah and Hubbuch, Jürgen
Title Image analysis as PAT-Tool for use in extrusion-based bioprinting [Abstract]
Year 2020
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The technology of bioprinting is arousing a growing interest in biopharmaceutical research and industry. In order to accelerate process development in the field of bioprinting, image-based analysis methods are non-invasive, time- and cost-saving tools which are usable for printer characterization, bioink printability evaluation, and process optimization. Image processing can also be used for the study of reproducibility, since reliable production is important in the transition from research to industrial application, and more precisely to clinical studies. This study revolves around the establishment of an automated and image-based line analysis method for bioprinting applications which enables an easy comparison of 3D-printed lines. Diverse rheological properties of bioinks and the printing process affect the geometry of the resulting object. The line represents a simple geometry, where the influence of the rheological properties and printing parameters is directly apparent. Therefore, a method for line analysis was developed on the basis of image recognition. At first, the method is tested for several substances such as Nivea®, pure and colored Kolliphor solutions, and two commercially available hydrogel formulations which can be used as bioinks. These are Biogelx™-ink-RGD by Biogelx and Cellink® Bioink by Cellink. The examination of limitations showed that transparent materials such as Kolliphor-based solutions cannot be analyzed with the developed method whereas opaque materials such as Nivea® and both bioinks can be analyzed. In the course of process characterization, the method was used to investigate the shrinkage behavior for both bionks. With the help of the line analysis tool, a shrinkage behavior of both bioinks was demonstrated and thus, process time could be identified as a critical process parameter.
AUTHOR Gretzinger, Sarah and Beckert, Nicole and Gleadall, Andrew and Lee-Thedieck, Cornelia and Hubbuch, Jürgen
Title 3D bioprinting – Flow cytometry as analytical strategy for 3D cell structures [Abstract]
Year 2018
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The importance of 3D printing technologies increased significantly over the recent years. They are considered to have a huge impact in regenerative medicine and tissue engineering, since 3D bioprinting enables the production of cell-laden 3D scaffolds. Transition from academic research to pharmaceutical industry or clinical applications, however, is highly dependent on developing a robust and well-known process, while maintaining critical cell characteristics. Hence, a directed and systematic approach to 3D bioprinting process development is required, which also allows for the monitoring of these cell characteristics. This work presents the development of a flow cytometry-based analytical strategy as a tool for 3D bioprinting research. The development was based on a model process using a commercially available alginate-based bioink, the β-cell line INS-1E, and direct dispensing as 3D bioprinting method. We demonstrated that this set-up enabled viability and proliferation analysis. Additionally, use of an automated sampler facilitated high-throughput screenings. Finally, we showed that each process step, e.g. suspension of cells in bioink or 3D printing, cross-linking of the alginate scaffold after printing, has a crucial impact on INS-1E viability. This reflects the importance of process optimization in 3D bioprinting and the usefulness of the flow cytometry-based analytical strategy described here. The presented strategy has a great potential as a cell characterisation tool for 3D bioprinting and may contribute to a more directed process development.
AUTHOR Schmieg, Barbara and Schimek, Adrian and Franzreb, Matthias
Title Development and performance of a 3D‐printable Polyethylenglycol‐Diacrylate hydrogel suitable for enzyme entrapment and long‐term biocatalytic applications [Abstract]
Year 2018
Journal/Proceedings Engineering in Life Sciences
Reftype
DOI/URL DOI
Abstract
Physical entrapment of enzymes within a porous matrix is a fast and gentle process to immobilize biocatalysts to enable their recycling and long‐term use. This study introduces the development of a biocompatible 3D‐printing material suitable for enzyme entrapment, while having good rheological and UV‐hardening properties. Three different viscosity‐enhancing additives have been tested in combination with a polyethylenglycol‐diacrylate‐based hydrogel system. The addition of polyxanthan or hectorite clay particles results in hydrogels that degrade over hours or days, releasing entrapped compounds. In contrast, the addition of nanometer‐sized silicate particles ensures processability while preventing disintegration of the hydrogel. Lattice structures with a total height of 6 mm consisting of 40 layers were 3D‐printed with all materials and characterized by image analysis. Rheological measurements identified a shear stress window of 200 < τ < 500 Pa at shear rates of 25 s−1 and 25°C for well‐defined geometries with an extrusion‐based printhead. Enzymes immobilized in these long‐term stable hydrogel structures retained an effective activity of approximately 10% compared to the free enzyme in solution. It could be shown that the reduction of effective activity isn't caused by a significant reduction of the intrinsic enzyme activity but by mass transfer limitations within the printed hydrogel structures. This article is protected by copyright. All rights reserved