BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Industrial
Cancer Cell Lines
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
All Groups
- Printing Technology
- Biomaterial
- Non-cellularized gels/pastes
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Ionic Liquids
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Magnetorheological fluid (MR fluid – MRF)
- Salecan
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Jeffamine
- Polyethylene
- SEBS
- Carbopol
- Epoxy
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Fibrinogen
- Fibrin
- Paeoniflorin
- Fibronectin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- Cellulose
- Novogel
- Hyaluronic Acid
- Peptide gel
- Methacrylated Silk Fibroin
- Polyethylene glycol (PEG) based
- α-Bioink
- Collagen
- Elastin
- Heparin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Silk Fibroin
- Pyrogallol
- Xanthan Gum
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Solid Dosage Drugs
- Thermoplastics
- Non-cellularized gels/pastes
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- Melanocytes
- Retinal
- Chondrocytes
- Embrionic Kidney (HEK)
- Corneal Stromal Cells
- Fibroblasts
- β cells
- Myoblasts
- Pericytes
- Hepatocytes
- Cancer Cell Lines
- Bacteria
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Osteoblasts
- Monocytes
- Mesothelial cells
- Epithelial
- Neutrophils
- Adipocytes
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Stem Cells
- Spheroids
- Meniscus Cells
- Synoviocytes
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Neurons
- Macrophages
- Human Trabecular Meshwork Cells
- Endothelial
- CardioMyocites
- Institution
- Trinity College
- Novartis
- University of Central Florida
- Hefei University
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- University of Toronto
- Brown University
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Montreal University
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Harbin Institute of Technology
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- University of Sheffield
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- Tiangong University
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Innsbruck University
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Politecnico di Torino
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- University of Nottingham
- University of Geneva
- SINTEF
- Rice University
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Biomaterial Processing
- Tissue Models – Drug Discovery
- Industrial
- Drug Discovery
- In Vitro Models
- Robotics
- Electronics – Robotics – Industrial
- Medical Devices
- Tissue and Organ Biofabrication
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Muscle Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Delivery
- Skin Tissue Engineering
- Vascularization
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
- Review Paper
AUTHOR
Year
2023
Journal/Proceedings
Small Structures
Reftype
DOI/URL
DOI
Groups
AbstractHerein, the fabrication of light-sensitive high-aspect ratio surfaces with switchable topography using melt-electrowriting of shape-memory polymers and deposition of light-to-heat converting black ink on it by dip coating is reported on. The lamellae exposed to low temperatures are hard and cannot be deformed by water droplets. The temperature reached upon illumination of surfaces is close to the melting point of the soft segment of the polyurethane that leads to softening of the polymer. Due to this, it is possible to locally deform and recover the light-softened surface structures by water droplets deposited on lamellae. The deformed state can be fixed by cooling down resulting in the crystallization of the polymer. Thus, the reversibility of local deformation can be achieved. Finally, the application of the developed approach and materials for the fabrication of smart light-controlled valves is demonstrated, which can be used for the controlled mixing of fluids in microfluidic devices.
AUTHOR
Year
2017
Journal/Proceedings
Science Advances
Reftype
Groups
AbstractDespite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of {textquotedblleft}living materials{textquotedblright} capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.
AUTHOR
Year
2017
Journal/Proceedings
Nature
Reftype
DOI/URL
DOI
Groups
AbstractProgress towards the integration of technology into livingo ganisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere1,2. Here we introduce an electric eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems3–6.�
AUTHOR
Year
2023
Journal/Proceedings
RSC Adv.
Reftype
DOI/URL
DOI
Groups
AbstractPolymer electrolytes (PEs) are a promising alternative to overcome shortcomings of conventional lithium ion batteries (LiBs) and make them safer for users. Introduction of self-healing features in PEs additionally leads to prolonged life-time of LIBs{,} thus tackling cost and environmental issues. We here present solvent free{,} self-healable{,} reprocessable{,} thermally stable{,} conductive poly(ionic liquid) (PIL) consisting of pyrrolidinium-based repeating units. PEO-functionalized styrene was used as a co-monomer for improving mechanical properties and introducing pendant OH groups in the polymer backbone to act as a transient crosslinking site for boric acid{,} leading to the formation of dynamic boronic ester bonds{,} thus forming a vitrimeric material. Dynamic boronic ester linkages allow reprocessing (at 40 °C){,} reshaping and self-healing ability of PEs. A series of vitrimeric PILs by varying both monomers ratio and lithium salt (LiTFSI) content was synthesized and characterized. The conductivity reached 10−5 S cm−1 at 50 °C in the optimized composition. Moreover{,} the PILs rheological properties fit the required melt flow behavior (above 120 °C) for 3D printing via fused deposition modeling (FDM){,} offering the possibility to design batteries with more complex and diverse architectures.
AUTHOR
Title
3D Printable Composite Polymer Electrolytes: Influence of SiO2 Nanoparticles on 3D-Printability
[Abstract]
Year
2022
Journal/Proceedings
Nanomaterials
Reftype
Groups
AbstractWe here demonstrate the preparation of composite polymer electrolytes (CPEs) for Li-ion batteries, applicable for 3D printing process via fused deposition modeling. The prepared composites consist of modified poly(ethylene glycol) (PEG), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and SiO2-based nanofillers. PEG was successfully end group modified yielding telechelic PEG containing either ureidopyrimidone (UPy) or barbiturate moieties, capable to form supramolecular networks via hydrogen bonds, thus introducing self-healing to the electrolyte system. Silica nanoparticles (NPs) were used as a filler for further adjustment of mechanical properties of the electrolyte to enable 3D-printability. The surface functionalization of the NPs with either ionic liquid (IL) or hydrophobic alkyl chains is expected to lead to an improved dispersion of the NPs within the polymer matrix. Composites with different content of NPs (5%, 10%, 15%) and LiTFSI salt (EO/Li+ = 5, 10, 20) were analyzed via rheology for a better understanding of 3D printability, and via Broadband Dielectric Spectroscopy (BDS) for checking their ionic conductivity. The composite electrolyte PEG 1500 UPy2/LiTFSI (EO:Li 5:1) mixed with 15% NP-IL was successfully 3D printed, revealing its suitability for application as printable composite electrolytes.
AUTHOR
Title
3D-Printed Hierarchical Ceramic Architectures for Ultrafast Emulsion Treatment and Simultaneous Oil-Water Filtration
[Abstract]
Year
2022
Journal/Proceedings
ACS Materials Lett.
Reftype
DOI/URL
DOI
Groups
AbstractThere is a critical need for energy-efficient water treatment processes as the world seeks to limit global warming below 1.5 °C. Gravity-driven mesh filtration presents a sustainable solution to treating oily wastewater and emulsions, which are byproducts of many human activities. The promise of a green alternative is getting closer with the development of 3D printing combined with reusable, recyclable, and ubiquitous materials such as silica to produce durable and recyclable filters with controllable mesh spacing. In this work, several filters were fabricated to separate oily water mixtures with a separation efficiency of 99% at high flow flux by coating 3D porous ceramic architectures with organosilanes. The proposed ceramic filters can also treat oil-in-water and water-in-oil surfactant-stabilized emulsions with high flow flux. This strategy to functionalize the 3D printed silica surface to form either hydrophobic or hydrophilic surfaces can open a new possibility for gravity-driven simultaneous oil-water separation. The first gravity-driven hierarchical auto-oil-water separator (HAOS) was introduced to separate an oily water mixture into two different containers using a combination of 3D printed hierarchical hydrophilic and hydrophobic filters without an additional postseparation step.
AUTHOR
Title
3D-printed TiO2-Ti3C2Tx heterojunction/rGO/PDMS composites with gradient pore size for electromagnetic interference shielding and thermal management
[Abstract]
Year
2022
Journal/Proceedings
Composites Part A: Applied Science and Manufacturing
Reftype
Groups
AbstractIn this paper, the Ti3C2Tx/GO frame with vertical pore gradient is constructed by using 3D printing technology. The TiO2-Ti3C2Tx heterojunctions is generated in situ by thermal annealing to control the oxidation of 3D frames. TiO2-Ti3C2Tx/rGO/PDMS composites with high EMI SE and excellent thermal management performance are assembled by curing the annealed 3D frame with polydimethylsiloxane (PDMS). Notably, the composites have a unique multilayer-scale structure that rod-shaped TiO2 particles are decorated on Ti3C2Tx substrate and TiO2-Ti3C2Tx/rGO stack to form an amorphous porous gradient pore size structure. The effect of gradient pore size on EMI SE of composites is studied by simulation. Under the synergistic effect of multiple loss mechanism, the designed composites show conductivity of up to 173.1 S/m, the thickness of the composite is 2 mm and the density is 67mg/cm3, which shows excellent EMI SE of 58 dB. The composites also have excellent thermal management performance.
AUTHOR
Title
A 3D-printed framework with a gradient distributed heterojunction and fast Li+ conductivity interfaces for high-rate lithium metal anodes
[Abstract]
Year
2022
Journal/Proceedings
J. Mater. Chem. A
Reftype
DOI/URL
DOI
Groups
AbstractA bottleneck limiting the practical application of lithium metal anodes is the uncontrolled growth of lithium dendrites caused by gradient distributed Li+ from separators to collectors. Herein{,} 3D-printed frameworks with a gradient distributed heterojunction and fast Li+ conductivity interfaces are developed to regulate the Li+ distribution and the direction of dendrite growth. More importantly{,} the effect of different Li+ concentration gradient frameworks on Li+ deposition behavior was analyzed in detail. Synchrotron X-ray tomography demonstrates that macropores dominate the framework{,} which effectively suppresses the volume change caused by lithium deposition. DFT calculations confirm the high lithiophilicity of γ-Al2O3 and the graphene heterojunction. Synchrotron radiation-based soft X-ray absorption spectroscopy illustrates the fast Li+ conductivity Li–Al–O interface resulting from the shortened Al–O bond distance. Benefiting from the higher Li+ concentration differences during the dissolution process and Li–Al–O interfaces{,} the gradient framework can achieve a high rate performance of ∼40 mV overpotential at 10 mA cm−2 and long cycle stability of ∼1500 h at 1 mA cm−2.
AUTHOR
Title
Printable Electrolytes: Tuning 3D-Printing by Multiple Hydrogen Bonds and Added Inorganic Lithium-Salts
[Abstract]
Year
2022
Journal/Proceedings
Advanced Materials Technologies
Reftype
DOI/URL
DOI
Groups
AbstractAbstract Here, the 3D-printing of supramolecular polymer electrolytes is reported, able to be manufactured via 3D-printing processes, additionally dynamically compensating for volume changes. A careful mechanical design, in addition to rheological effects observed for different additives to the electrolyte, is investigated and adjusted, in order to achieve printability via an extrusion process to generate a conductive electrode material. Qudruple-hydrogen bonds (UPy) act as supramolecular entities for the desired dynamic properties to adjust printability, in addition to added LiTFSi-salts to achieve ionic conductivities of ≈10–4 S cm–1 at T = 80 °C. Three different telechelic UPy-PEO/PPO-UPy-polymers with molecular weights ranging from Mn = 600–1500 g mol−1 were investigated in view of their 3D-printability by FDM-processes. It is found that there are three effects counterbalancing the rheological properties of the polymers: besides temperatures, which can be used as a known tool to adjust melt-rheology, also the addition of lithium-salts in junction with the polymers crystallinity exerts a major toolbox to 3D-print these electrolytes. Using specific compositions with Li/EO-ratios from 20:1, 10:1, and 5:1, the rheological profile can be adjusted to reach the required printability window. AT-IR-investigations clearly indicate a weakening of the UPy-bonds by the added Li+ ions, in addition to a reduction of the crystallinity of the PEO-units, further changing the rheological profile. The so generated electrolytes are printable systems for novel electrolytes.
AUTHOR
Title
Smart Mechanically Tunable Surfaces with Shape Memory Behavior and Wetting-Programmable Topography
[Abstract]
Year
2022
Journal/Proceedings
ACS Appl. Mater. Interfaces
Reftype
DOI/URL
DOI
Groups
AbstractThis paper reports for the first time the fabrication and investigation of wetting properties of structured surfaces formed by lamellae with an exceptionally high aspect ratio of up to 57:1 and more. The lamellar surfaces were fabricated using a polymer with tunable mechanical properties and shape-memory behavior. It was found that wetting properties of such structured surfaces depend on temperature, and thermal treatment history-structured surfaces are wetted easier at elevated temperature or after cooling to room temperature when the polymer is soft because of the easier deformability of lamellae. The shape of lamellae deformed by droplets can be temporarily fixed at low temperature and remains fixed upon heating to room temperature. Heating above the transition temperature of the shape-memory polymer restores the original shape. The high aspect ratio allows tuning of geometry not only manually, as it is done in most works reported previously but can also be made by a liquid droplet and is controlled by temperature. This behavior opens new opportunities for the design of novel smart elements for microfluidic devices such as smart valves, whose state and behavior can be switched by thermal stimuli: valves that can or cannot be opened that are able to close or can be fixed in an open or closed states.
AUTHOR
Title
3D-printed monolithic porous adsorbents from a solution-processible, hypercrosslinkable, functionalizable polymer
[Abstract]
Year
2021
Journal/Proceedings
Chemical Engineering Journal
Reftype
Groups
AbstractSolid adsorbents have been actively developed for energy-efficient gas separations including carbon capture and air purification. However, conventional particulate adsorbents often show ineffective mass transfer and significant pressure drop in practical operations, leading to a limited overall performance. As a potential solution to these issues, the development of three-dimensionally (3D) structured adsorbents has been proposed. Herein, we report a novel approach to design 3D monolithic adsorbents for CO2 separation via 3D printing of a processible polymer, which in turn can be transformed into a functional porous material via hypercrosslinking and amine-grafting. Importantly, such structure can be realized without an aid from binders or mechanical supports. Our adsorbents demonstrated a promising CO2 adsorption performance without experiencing any pressure drop under dynamic flow condition. The stability and regenerability, which are also important requirements for practical operations, were also successfully demonstrated through a repetitive adsorption-desorption cycling test in the presence of water vapor. We envisage that our approach can be applied in the development of structurally versatile adsorbents for various gas separation processes.
AUTHOR
Title
High Temperature Co-firing of 3D-Printed Al-ZnO/Al2O3 Multi-Material Two-Phase Flow Sensor
[Abstract]
Year
2021
Journal/Proceedings
Journal of Materiomics
Reftype
Groups
AbstractSensors are crucial in the understanding of machines working under high temperatures and high-pressure conditions. Current devices utilize polymeric materials as electrical insulators which pose a challenge in the device’s lifespan. Ceramics, on the other hand, is robust and able to withstand high temperature and pressure. For such applications, a co-fired ceramic device which can provide both electrical conductivity and insulation is beneficial and acts as a superior candidate for sensor devices. In this paper, we propose a novel fabrication technique of complex multi-ceramics structures via 3D printing. This fabrication methodology increases both the geometrical complexity and the device’s shape precision. Structural ceramics (alumina) was employed as the electrical insulator whilst providing mechanical rigidity while a functional ceramic (alumina-doped zinc oxide) was employed as the electrically conductive material. The addition of sintering additives, tailoring the printing pastes’ solid loadings and heat treatment profile resolves multi-materials printing challenges such as shrinkage disparity and densification matching. Through high-temperature co-firing of ceramics (HTCC) technology, dense high quality functional multi-ceramics structures are achieved. The proposed fabrication methodology paves the way for multi-ceramics sensors to be utilized in high temperature and pressure systems in the near future.
AUTHOR
Title
Novel Shape-Stabilized Phase Change Material with Cascade Character: Synthesis, Performance and Shaping Evaluation
[Abstract]
Year
2021
Journal/Proceedings
Energies
Reftype
Groups
AbstractThermal Energy Storage (TES) materials, such as Phase Change Materials (PCMs) are proven to enhance the energy efficiency in many fields, such as automotive and building sectors, which correspond to the most energy intensive ones. Shape-stabilized PCM and cascade PCM are procedures to overcome the most important barriers when PCMs are applied since PCMs need to be encapsulated for their technical use: the leakage of the liquid phase, corrosion, low heat transfer and narrow temperature of application. In the present study, a novel shape stabilized PCM with cascade performance (cascade shape stabilized phase change material, CSS-PCM) is synthesized via dissolution, which allows up to 60 wt.% of a paraffin-PCM in the final composition. The novel CSS-PCM is based on a biopolymer, the polycaprolactone (PCL), a low melting temperature polyester as polymeric matrix and RT27 and Micronal DS 5040 acting as PCM. To evaluate the performance of the new TES materials developed, several techniques have been used: Differential Scanning Calorimetry (DSC), and Fourier-Transformed Infrared (FT-IR) spectroscopy were used to evaluate the thermophysical properties and the chemical properties of the different formulations. The CSS-PCM show an increment of storage capacity by increasing the PCM content, and the thermal reliability was also tested: some of the CSS-PCM formulations were stable for up to 500 thermal cycles. Finally, as a potential application of the new polymeric-based PCM 3D, a printing attempt was performed in order to analyze the viability of the formulations to be used as 3D printing material as a first proof of concept.
AUTHOR
Year
2018
Journal/Proceedings
Microporous and Mesoporous Materials
Reftype
Groups
AbstractAbstract A 3D printing method (the Direct Ink writing, DIW, method) is applied to produce SAPO-34 zeolite based structured adsorbents with the shape of a honeycomb-like monolith. The use of the 3D printing technique gives this structure a well-defined and easily adaptable geometry. As binder material, methyl cellulose was used. The SAPO-34 monolith was characterized by SEM as well as Ar and Hg porosimetry. The CO2 adsorption affinity, capacity and heat of adsorption were determined by recording high pressure adsorption isotherms at different temperatures, using the gravimetric technique. The separation potential was investigated by means of breakthrough experiments with mixtures of CO2 and N2. The experimental selectivity of CO2/N2 separation was compared to the selectivity as predicted by the Ideal Adsorbed Solution Theory. A drop in capacity was noticed during the experiments and N2 capacities were close to zero or slightly negative due to the very low adsorption, meaning absolute selectivity values could not be determined. However, due to the low N2 capacity, experimental selectivity is estimated to be excellent as was predicted with IAST. While the 3D printing is found to be a practical, fast and flexible route to generate monolithic adsorbent structures, improvements in formulation are required in terms of sample robustness for handling purposes and heat transfer characteristics of the obtained monoliths during gas separation.