TUTORIALS / DOCUMENTATIONS
USE CASES / WHITE PAPERS / WEBINARS
SCIENTIFIC PUBLICATIONS
You are researching: Halle-Wittenberg University
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Application
- Tissue Models – Drug Discovery
- Tissue and Organ Biofabrication
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Delivery
- Skin Tissue Engineering
- Vascularization
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Biomaterial Processing
- Drug Discovery
- Electronics – Robotics – Industrial
- BioSensors
- Personalised Pharmaceuticals
- Bioprinting Technologies
- Biomaterials & Bioinks
- Cell Type
- Organoids
- Meniscus Cells
- Skeletal Muscle-Derived Cells (SkMDCs)
- Macrophages
- Corneal Stromal Cells
- Stem Cells
- Chondrocytes
- Fibroblasts
- Myoblasts
- Cancer Cell Lines
- Articular cartilage progenitor cells (ACPCs)
- Osteoblasts
- Epithelial
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Spheroids
- Keratinocytes
- Neurons
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Embrionic Kidney (HEK)
- β cells
- Pericytes
- Bacteria
- Tenocytes
- Bioprinting Applications
- Institution
- University of Barcelona
- Rice University
- Hefei University
- Abu Dhabi University
- University of Sheffield
- DTU – Technical University of Denmark
- INM – Leibniz Institute for New Materials
- Innsbruck University
- Montreal University
- Harbin Institute of Technology
- ETH Zurich
- Nanyang Technological University
- Utrecht Medical Center (UMC)
- University of Manchester
- University of Nottingham
- Trinity College
- Chalmers University of Technology
- AO Research Institute (ARI)
- University of Wurzburg
- Institute for Bioengineering of Catalonia (IBEC)
- University of Amsterdam
- Bayreuth University
- Ghent University
- National University of Singapore
- Adolphe Merkle Institute Fribourg
- Zurich University of Applied Sciences (ZHAW)
- Hallym University
- National Institutes of Health (NIH)
- Rizzoli Orthopaedic Institute
- University of Bucharest
- University of Geneva
- Novartis
- Karlsruhe institute of technology
- Shanghai University
- Technical University of Dresden
- University of Michigan – School of Dentistry
- University of Tel Aviv
- Aschaffenburg University
- Chiao Tung University
- CIC biomaGUNE
- Halle-Wittenberg University
- Innotere
- Nanjing Medical University
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Queen Mary University
- Royal Free Hospital
- SINTEF
- University of Central Florida
- University of Freiburg
- Univerity of Hong Kong
- University of Nantes
- Myiongji University
- University of Applied Sciences Northwestern Switzerland
- University of Michigan, Biointerfaces Institute
- Sree Chitra Tirunal Institute
- Kaohsiung Medical University
- Baylor College of Medicine
- L'Oreal
- University of Bordeaux
- KU Leuven
- Veterans Administration Medical Center
- Hong Kong University
- Review Paper
- Printing Technology
- Biomaterial
- Thermoplastics
- Bioinks
- Xanthan Gum
- Paeoniflorin
- Alginate
- Gelatin-Methacryloyl (GelMA)
- Cellulose
- Hyaluronic Acid
- Polyethylene glycol (PEG) based
- Collagen
- Gelatin
- Gellan Gum
- Methacrylated hyaluronic acid (HAMA)
- Silk Fibroin
- Fibrinogen
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Carrageenan
- Chitosan
- Glycerol
- Poly(glycidol)
- Agarose
- methacrylated chondroitin sulfate (CSMA)
- Novogel
- Peptide gel
- α-Bioink
- Elastin
- Matrigel
- Methacrylated Chitosan
- Pectin
- Pyrogallol
- Fibrin
- Methacrylated Collagen (CollMA)
- Glucosamine
- Non-cellularized gels/pastes
- Jeffamine
- Mineral Oil
- Pluronic – Poloxamer
- Silicone
- Polyvinylpyrrolidone (PVP)
- Salt-based
- Acrylates
- 2-hydroxyethyl-methacrylate (HEMA)
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Polyethylene
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- Polyisobutylene
- Konjac Gum
- Gelatin-Sucrose Matrix
- Chlorella Microalgae
- Poly(Vinyl Formal)
- Phenylacetylene
- 2-hydroxyethyl) methacrylate (HEMA)
- Paraffin
- Polyphenylene Oxide
- Micro/nano-particles
- Biological Molecules
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Ceramics
- Metals
AUTHOR
Title
Printable Electrolytes: Tuning 3D-Printing by Multiple Hydrogen Bonds and Added Inorganic Lithium-Salts
[Abstract]
Year
2022
Journal/Proceedings
Advanced Materials Technologies
Reftype
DOI/URL
DOI
Groups
AbstractAbstract Here, the 3D-printing of supramolecular polymer electrolytes is reported, able to be manufactured via 3D-printing processes, additionally dynamically compensating for volume changes. A careful mechanical design, in addition to rheological effects observed for different additives to the electrolyte, is investigated and adjusted, in order to achieve printability via an extrusion process to generate a conductive electrode material. Qudruple-hydrogen bonds (UPy) act as supramolecular entities for the desired dynamic properties to adjust printability, in addition to added LiTFSi-salts to achieve ionic conductivities of ≈10–4 S cm–1 at T = 80 °C. Three different telechelic UPy-PEO/PPO-UPy-polymers with molecular weights ranging from Mn = 600–1500 g mol−1 were investigated in view of their 3D-printability by FDM-processes. It is found that there are three effects counterbalancing the rheological properties of the polymers: besides temperatures, which can be used as a known tool to adjust melt-rheology, also the addition of lithium-salts in junction with the polymers crystallinity exerts a major toolbox to 3D-print these electrolytes. Using specific compositions with Li/EO-ratios from 20:1, 10:1, and 5:1, the rheological profile can be adjusted to reach the required printability window. AT-IR-investigations clearly indicate a weakening of the UPy-bonds by the added Li+ ions, in addition to a reduction of the crystallinity of the PEO-units, further changing the rheological profile. The so generated electrolytes are printable systems for novel electrolytes.
AUTHOR
Title
3D Printing of Core–Shell Capsule Composites for Post-Reactive and Damage Sensing Applications
[Abstract]
Year
2020
Journal/Proceedings
Advanced Materials Technologies
Reftype
DOI/URL
DOI
Groups
AbstractAbstract 3D printing of multicomponent materials as an advantageous method over traditional mold casting methods is demonstrated, developing small core–shell capsule composites fabricated by a two-step 3D printing process. Using a two-print-head system (fused deposition modeling extruder and a liquid inkjet print head), micro-sized capsules are manufactured in sizes ranging from 100 to 800 µm. The thermoplastic polymer poly(ε-caprolactone) (PCL) is chosen as matrix/shell material due to its optimal interaction with the embedded hydrophobic liquids. First, the core–shell capsules are printed with model liquids and pure PCL to optimize the printing parameters and to ensure fully enclosed capsules inside the polymer. As a proof of concept, novel “click” reaction systems, used in self-healing and stress-detection applications, are manufactured in which PCL composites with nano- and micro-fillers are combined with reactive, encapsulated liquids. The so generated 3D printed core–shell capsule composite can be used for post-printing reactions and damage sensing when combined with a fluorogenic dye.
AUTHOR
Year
2020
Journal/Proceedings
Macromolecular Rapid Communications
Reftype
DOI/URL
DOI
Groups
AbstractAbstract The preparation and characterization of mechanoresponsive, 3D-printed composites are reported using a dual-printing setup for both, liquid dispensing and fused-deposition-modeling. The here reported stress-sensing materials are based on high- and low molecular weight mechanophores, including poly(ε-caprolactone)-, polyurethane-, and alkyl(C11)-based latent copper(I)bis(N-heterocyclic carbenes), which can be activated by compression to trigger a fluorogenic, copper(I)-catalyzed azide/alkyne “click”-reaction of an azide-functionalized fluorescent dye inside a bulk polymeric material. Focus is placed on the printability and postprinting activity of the latent mechanophores and the fluorogenic “click”-components. The multicomponent specimen containing both, azide and alkyne, are manufactured via a 3D-printer to place the components separately inside the specimen into void spaces generated during the FDM-process, which subsequently are filled with liquids using a separate liquid dispenser, located within the same 3D-printing system. The low-molecular weight mechanophores bearing the alkyl-C11 chains display the best printability, yielding a mechanochemical response after the 3D-printing process.
AUTHOR
Year
2020
Journal/Proceedings
ACS Appl. Polym. Mater.
Reftype
DOI/URL
DOI
Groups
AbstractWe present a comprehensive investigation of mechanical properties of supramolecular polymer networks with rationally developed multistrength hydrogen-bonding interactions. Self-healing poly(dimethylsiloxane) (PDMS)-based elastomers with varying elasticity, fracture toughness, and the ability to dissipate strain energy through the reversible breakage and re-formation of the supramolecular interactions were obtained. By changing the ratio between isophorone diisocyanate (IU), 4,4′-methylenebis(cyclohexyl isocyanate) (MCU), and 4,4′-methylenebis(phenyl isocyanate) (MPU) and by varying the molecular weight of the PDMS precursor, we obtained a library of poly(urea)s to study the interplay of mechanical performance and self-healability. The Young’s moduli of the presented materials ranged between 0.4 and 13 MPa and increased with decreasing molecular weight of the PDMS precursor and increasing content of MCU or MPU units related to the formation of stronger hydrogen-bonding interactions. By exchanging MPU against MCU units, we achieved an optimum balance between mechanical properties and self-healing performance, and by the additional reduction of the molecular weight of the precursor polymer, a minimum recovery of 80% in stress within 12 h at room temperature was observed. Selected poly(urea)s could be processed via 3D printing by the conventional extrusion method, obtaining dimensionally stable and freestanding objects. We present a comprehensive investigation of mechanical properties of supramolecular polymer networks with rationally developed multistrength hydrogen-bonding interactions. Self-healing poly(dimethylsiloxane) (PDMS)-based elastomers with varying elasticity, fracture toughness, and the ability to dissipate strain energy through the reversible breakage and re-formation of the supramolecular interactions were obtained. By changing the ratio between isophorone diisocyanate (IU), 4,4′-methylenebis(cyclohexyl isocyanate) (MCU), and 4,4′-methylenebis(phenyl isocyanate) (MPU) and by varying the molecular weight of the PDMS precursor, we obtained a library of poly(urea)s to study the interplay of mechanical performance and self-healability. The Young’s moduli of the presented materials ranged between 0.4 and 13 MPa and increased with decreasing molecular weight of the PDMS precursor and increasing content of MCU or MPU units related to the formation of stronger hydrogen-bonding interactions. By exchanging MPU against MCU units, we achieved an optimum balance between mechanical properties and self-healing performance, and by the additional reduction of the molecular weight of the precursor polymer, a minimum recovery of 80% in stress within 12 h at room temperature was observed. Selected poly(urea)s could be processed via 3D printing by the conventional extrusion method, obtaining dimensionally stable and freestanding objects.
AUTHOR
Title
3D Printing of Supramolecular Polymers: Impact of Nanoparticles and Phase Separation on Printability
[Abstract]
Year
2019
Journal/Proceedings
Macromolecular Rapid Communications
Reftype
DOI/URL
DOI
Groups
AbstractAbstract 3D printing of linear and three-arm star supramolecular polymers with attached hydrogen bonds and their nanocomposites is reported. The concept is based on hydrogen-bonded supramolecular polymers, known to form nano-sized micellar clusters. Printability is based on reversible thermal- and shear-induced dissociation of a supramolecular polymer network, which generates stable and self-supported structures after printing, as checked via melt-rheology and X-ray scattering. The linear and three-arm star poly(isobutylene)s PIB-B2 (Mn = 8500 g mol −1), PIB-B3 (Mn = 16 000 g mol −1), and linear poly(ethylene glycol)s PEG-B2 (Mn = 900 g mol−1, 8500 g mol −1) are prepared and then probed by melt-rheology to adjust the viscosity to address the proper printing window. The supramolecular PIB polymers show a rubber-like behavior and are able to form self-supported 3D printed objects at room temperature and below, reaching polymer strand diameters down to 200–300 µm. Nanocomposites of PIB-B2 with silica nanoparticles (12 nm, 5–15 wt%) are generated, in turn leading to an improvement of their shape persistence. A blend of the linear polymer PIB-B2 and the three-arm star polymer PIB-B3 (ratio ≈ 3/1 mol) reaches an even higher structural stability, able to build free-standing structures.