REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Glycerol
Matching entries: 3 /3
All Groups
AUTHOR Schroeder, Thomas B. H. and Guha, Anirvan and Lamoureux, Aaron and VanRenterghem, Gloria and Sept, David and Shtein, Max and Yang, Jerry and Mayer, Michael
Title An electric-eel-inspired soft power source from stacked hydrogels [Abstract]
Year 2017
Journal/Proceedings Nature
Reftype
DOI/URL DOI
Abstract
Progress towards the integration of technology into livingo ganisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere1,2. Here we introduce an electric eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems3–6.�
AUTHOR Cernecu, Alexandra and Lungu, Adriana and Stancu, Izabela Cristina and Vasile, Eugeniu and Iovu, Horia
Title Polysaccharide-Based 3D Printing Inks Supplemented with Additives
Year 2020
Journal/Proceedings University Politechnica of Bucharest Scientific Bulletin
Reftype
DOI/URL URL
AUTHOR Tan, Wen See and Shi, Qian and Chen, Shengyang and Bin Juhari, Muhammad Aidil and Song, Juha
Title Recyclable and biocompatible microgel-based supporting system for positive 3D freeform printing of silicone rubber [Abstract]
Year 2020
Journal/Proceedings Biomedical Engineering Letters
Reftype Tan2020
DOI/URL DOI
Abstract
Additive manufacturing (AM) of biomaterials has evolved from a rapid prototyping tool into a viable approach for the manufacturing of patient-specific implants over the past decade. It can tailor to the unique physiological and anatomical criteria of the patient’s organs or bones through precise controlling of the structure during the 3D printing. Silicone elastomers, which is a major group of materials in many biomedical implants, have low viscosities and can be printed with a special AM platform, known as freeform 3D printing systems. The freeform 3D printing systems are composed of a supporting bath and a printing material. Current supporting matrices that are either commercially purchased or synthesized were usually disposed of after retrieval of the printed part. In this work, we proposed a new and improved supporting matrix comprises of synthesized calcium alginate microgels produced via encapsulation which can be recycled, reused, and recovered for multiple prints, hence minimizing wastage and cost of materials. The dehydration tolerance of the calcium alginate microgels was improved through physical means by the addition of glycerol and chemical means by developing new calcium alginate microgels encapsulated with glycerol. The recyclability of the heated calcium alginate microgels was also enhanced by a rehydration step with sodium chloride solution and a recovery step with calcium chloride solution via the ion exchange process. We envisaged that our reusable and recyclable biocompatible calcium alginate microgels can save material costs, time, and can be applied in various freeform 3D printing systems.