TUTORIALS / DOCUMENTATIONS
USE CASES / WHITE PAPERS / WEBINARS
SCIENTIFIC PUBLICATIONS
You are researching: Glycerol
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Application
- Tissue Models – Drug Discovery
- Tissue and Organ Biofabrication
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Delivery
- Skin Tissue Engineering
- Vascularization
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Biomaterial Processing
- Drug Discovery
- Electronics – Robotics – Industrial
- BioSensors
- Personalised Pharmaceuticals
- Bioprinting Technologies
- Biomaterials & Bioinks
- Cell Type
- Organoids
- Meniscus Cells
- Skeletal Muscle-Derived Cells (SkMDCs)
- Macrophages
- Corneal Stromal Cells
- Stem Cells
- Chondrocytes
- Fibroblasts
- Myoblasts
- Cancer Cell Lines
- Articular cartilage progenitor cells (ACPCs)
- Osteoblasts
- Epithelial
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Spheroids
- Keratinocytes
- Neurons
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Embrionic Kidney (HEK)
- β cells
- Pericytes
- Bacteria
- Tenocytes
- Bioprinting Applications
- Institution
- University of Barcelona
- Rice University
- Hefei University
- Abu Dhabi University
- University of Sheffield
- DTU – Technical University of Denmark
- INM – Leibniz Institute for New Materials
- Innsbruck University
- Montreal University
- Harbin Institute of Technology
- ETH Zurich
- Nanyang Technological University
- Utrecht Medical Center (UMC)
- University of Manchester
- University of Nottingham
- Trinity College
- Chalmers University of Technology
- AO Research Institute (ARI)
- University of Wurzburg
- Institute for Bioengineering of Catalonia (IBEC)
- University of Amsterdam
- Bayreuth University
- Ghent University
- National University of Singapore
- Adolphe Merkle Institute Fribourg
- Zurich University of Applied Sciences (ZHAW)
- Hallym University
- National Institutes of Health (NIH)
- Rizzoli Orthopaedic Institute
- University of Bucharest
- University of Geneva
- Novartis
- Karlsruhe institute of technology
- Shanghai University
- Technical University of Dresden
- University of Michigan – School of Dentistry
- University of Tel Aviv
- Aschaffenburg University
- Chiao Tung University
- CIC biomaGUNE
- Halle-Wittenberg University
- Innotere
- Nanjing Medical University
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Queen Mary University
- Royal Free Hospital
- SINTEF
- University of Central Florida
- University of Freiburg
- Univerity of Hong Kong
- University of Nantes
- Myiongji University
- University of Applied Sciences Northwestern Switzerland
- University of Michigan, Biointerfaces Institute
- Sree Chitra Tirunal Institute
- Kaohsiung Medical University
- Baylor College of Medicine
- L'Oreal
- University of Bordeaux
- KU Leuven
- Veterans Administration Medical Center
- Hong Kong University
- Review Paper
- Printing Technology
- Biomaterial
- Thermoplastics
- Bioinks
- Xanthan Gum
- Paeoniflorin
- Alginate
- Gelatin-Methacryloyl (GelMA)
- Cellulose
- Hyaluronic Acid
- Polyethylene glycol (PEG) based
- Collagen
- Gelatin
- Gellan Gum
- Methacrylated hyaluronic acid (HAMA)
- Silk Fibroin
- Fibrinogen
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Carrageenan
- Chitosan
- Glycerol
- Poly(glycidol)
- Agarose
- methacrylated chondroitin sulfate (CSMA)
- Novogel
- Peptide gel
- α-Bioink
- Elastin
- Matrigel
- Methacrylated Chitosan
- Pectin
- Pyrogallol
- Fibrin
- Methacrylated Collagen (CollMA)
- Glucosamine
- Non-cellularized gels/pastes
- Jeffamine
- Mineral Oil
- Pluronic – Poloxamer
- Silicone
- Polyvinylpyrrolidone (PVP)
- Salt-based
- Acrylates
- 2-hydroxyethyl-methacrylate (HEMA)
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Polyethylene
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- Polyisobutylene
- Konjac Gum
- Gelatin-Sucrose Matrix
- Chlorella Microalgae
- Poly(Vinyl Formal)
- Phenylacetylene
- 2-hydroxyethyl) methacrylate (HEMA)
- Paraffin
- Polyphenylene Oxide
- Micro/nano-particles
- Biological Molecules
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Ceramics
- Metals
AUTHOR
Title
Multi-material 3D printing of programmable and stretchable oromucosal patches for delivery of saquinavir
[Abstract]
Year
2021
Journal/Proceedings
International Journal of Pharmaceutics
Reftype
Groups
AbstractOromucosal patches for drug delivery allow fast onset of action and ability to circumvent hepatic first pass metabolism of drugs. While conventional fabrication methods such as solvent casting or hot melt extrusion are ideal for scalable production of low-cost delivery patches, these methods chiefly allow for simple, homogenous patch designs. As alternative, a multi-material direct-ink-write 3D printing for rapid fabrication of complex oromucosal patches with unique design features was demonstrated in the present study. Specifically, three print-materials: an acidic saquinavir-loaded hydroxypropyl methylcellulose ink, an alkaline effervescent sodium carbonate-loaded ink, and a methyl cellulose backing material were combined in various designs. The CO2 content and pH of the microenvironment were controlled by adjusting the number of alkaline layers in the patch. Additionally, the rigid and brittle patches were converted to compliant and stretchable patches by implementing mesh-like designs. Our results illustrate how 3D printing can be used for rapid design and fabrication of multifunctional or customized oromucosal patches with tailored dosages and changed drug permeation.
AUTHOR
Year
2017
Journal/Proceedings
Nature
Reftype
DOI/URL
DOI
Groups
AbstractProgress towards the integration of technology into livingo ganisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere1,2. Here we introduce an electric eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems3–6.�
AUTHOR
Title
Polysaccharide-Based 3D Printing Inks Supplemented with Additives
Year
2020
Journal/Proceedings
University Politechnica of Bucharest Scientific Bulletin
Reftype
DOI/URL
URL
AUTHOR
Title
Recyclable and biocompatible microgel-based supporting system for positive 3D freeform printing of silicone rubber
[Abstract]
Year
2020
Journal/Proceedings
Biomedical Engineering Letters
Reftype
Tan2020
DOI/URL
DOI
Groups
AbstractAdditive manufacturing (AM) of biomaterials has evolved from a rapid prototyping tool into a viable approach for the manufacturing of patient-specific implants over the past decade. It can tailor to the unique physiological and anatomical criteria of the patient’s organs or bones through precise controlling of the structure during the 3D printing. Silicone elastomers, which is a major group of materials in many biomedical implants, have low viscosities and can be printed with a special AM platform, known as freeform 3D printing systems. The freeform 3D printing systems are composed of a supporting bath and a printing material. Current supporting matrices that are either commercially purchased or synthesized were usually disposed of after retrieval of the printed part. In this work, we proposed a new and improved supporting matrix comprises of synthesized calcium alginate microgels produced via encapsulation which can be recycled, reused, and recovered for multiple prints, hence minimizing wastage and cost of materials. The dehydration tolerance of the calcium alginate microgels was improved through physical means by the addition of glycerol and chemical means by developing new calcium alginate microgels encapsulated with glycerol. The recyclability of the heated calcium alginate microgels was also enhanced by a rehydration step with sodium chloride solution and a recovery step with calcium chloride solution via the ion exchange process. We envisaged that our reusable and recyclable biocompatible calcium alginate microgels can save material costs, time, and can be applied in various freeform 3D printing systems.