REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Cell Type
Matching entries: 194 /194
All Groups
AUTHOR Daghrery, Arwa and Ferreira, Jessica A. and de Souza Araújo, Isaac J. and Clarkson, Brian H. and Eckert, George J. and Bhaduri, Sarit B. and Malda, Jos and Bottino, Marco C.
Title A Highly Ordered, Nanostructured Fluorinated CaP-Coated Melt Electrowritten Scaffold for Periodontal Tissue Regeneration [Abstract]
Year 2021
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Periodontitis is a chronic inflammatory, bacteria-triggered disorder affecting nearly half of American adults. Although some level of tissue regeneration is realized, its low success in complex cases demands superior strategies to amplify regenerative capacity. Herein, highly ordered scaffolds are engineered via Melt ElectroWriting (MEW), and the effects of strand spacing, as well as the presence of a nanostructured fluorinated calcium phosphate (F/CaP) coating on the adhesion/proliferation, and osteogenic differentiation of human-derived periodontal ligament stem cells, are investigated. Upon initial cell-scaffold interaction screening aimed at defining the most suitable design, MEW poly(ε-caprolactone) scaffolds with 500 µm strand spacing are chosen. Following an alkali treatment, scaffolds are immersed in a pre-established solution to allow for coating formation. The presence of a nanostructured F/CaP coating leads to a marked upregulation of osteogenic genes and attenuated bacterial growth. In vivo findings confirm that the F/CaP-coated scaffolds are biocompatible and lead to periodontal regeneration when implanted in a rat mandibular periodontal fenestration defect model. In aggregate, it is considered that this work can contribute to the development of personalized scaffolds capable of enabling tissue-specific differentiation of progenitor cells, and thus guide simultaneous and coordinated regeneration of soft and hard periodontal tissues, while providing antimicrobial protection.
AUTHOR Bouwmeester, Manon C. and Bernal, Paulina N. and Oosterhoff, Loes A. and van Wolferen, Monique E. and Lehmann, Vivian and Vermaas, Monique and Buchholz, Maj-Britt and Peiffer, Quentin C. and Malda, Jos and van der Laan, Luc J. W. and Kramer, Nynke I. and Schneeberger, Kerstin and Levato, Riccardo and Spee, Bart
Title Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies [Abstract]
Year 2021
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract There is a need for long-lived hepatic in vitro models to better predict drug induced liver injury (DILI). Human liver-derived epithelial organoids are a promising cell source for advanced in vitro models. Here, organoid technology is combined with biofabrication techniques, which holds great potential for the design of in vitro models with complex and customizable architectures. Here, porous constructs with human hepatocyte-like cells derived from organoids are generated using extrusion-based printing technology. Cell viability of bioprinted organoids remains stable for up to ten days (88–107% cell viability compared to the day of printing). The expression of hepatic markers, transporters, and phase I enzymes increased compared to undifferentiated controls, and is comparable to non-printed controls. Exposure to acetaminophen, a well-known hepatotoxic compound, decreases cell viability of bioprinted liver organoids to 21–51% (p < 0.05) compared to the start of exposure, and elevated levels of damage marker miR-122 are observed in the culture medium, indicating the potential use of the bioprinted constructs for toxicity testing. In conclusion, human liver-derived epithelial organoids can be combined with a biofabrication approach, thereby paving the way to create perfusable, complex constructs which can be used as toxicology- and disease-models.
AUTHOR Ng, Wei Long and Ayi, Teck Choon and Liu, Yi-Chun and Sing, Swee Leong and Yeong, Wai Yee and Tan, Boon-Huan
Title Fabrication and Characterization of 3D Bioprinted Triple-layered Human Alveolar Lung Models [Abstract]
Year 2021
Journal/Proceedings International journal of bioprinting
Reftype
DOI/URL URL
Abstract
The global prevalence of respiratory diseases caused by infectious pathogens has resulted in an increased demand for realistic in-vitro alveolar lung models to serve as suitable disease models. This demand has resulted in the fabrication of numerous two-dimensional (2D) and three-dimensional (3D) in-vitro alveolar lung models. The ability to fabricate these 3D in-vitro alveolar lung models in an automated manner with high repeatability and reliability is important for potential scalable production. In this study, we reported the fabrication of human triple-layered alveolar lung models comprising of human lung epithelial cells, human endothelial cells, and human lung fibroblasts using the drop-on-demand (DOD) 3D bioprinting technique. The polyvinylpyrrolidone-based bio-inks and the use of a 300 mm nozzle diameter improved the repeatability of the bioprinting process by achieving consistent cell output over time using different human alveolar lung cells. The 3D bioprinted human triple-layered alveolar lung models were able to maintain cell viability with relative similar proliferation profile over time as compared to non-printed cells. This DOD 3D bioprinting platform offers an attractive tool for highly repeatable and scalable fabrication of 3D in-vitro human alveolar lung models.
AUTHOR Alave Reyes-Furrer, Angela and De Andrade, Sonia and Bachmann, Dominic and Jeker, Heidi and Steinmann, Martin and Accart, Nathalie and Dunbar, Andrew and Rausch, Martin and Bono, Epifania and Rimann, Markus and Keller, Hansjoerg
Title Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses [Abstract]
Year 2021
Journal/Proceedings Communications Biology
Reftype Alave Reyes-Furrer2021
DOI/URL DOI
Abstract
A key to enhance the low translatability of preclinical drug discovery are in vitro human three-dimensional (3D) microphysiological systems (MPS). Here, we show a new method for automated engineering of 3D human skeletal muscle models in microplates and functional compound screening to address the lack of muscle wasting disease medication. To this end, we adapted our recently described 24-well plate 3D bioprinting platform with a printhead cooling system to allow microvalve-based drop-on-demand printing of cell-laden Matrigel containing primary human muscle precursor cells. Mini skeletal muscle models develop within a week exhibiting contractile, striated myofibers aligned between two attachment posts. As an in vitro exercise model, repeated high impact stimulation of contractions for 3 h by a custom-made electrical pulse stimulation (EPS) system for 24-well plates induced interleukin-6 myokine expression and Akt hypertrophy pathway activation. Furthermore, the known muscle stimulators caffeine and Tirasemtiv acutely increase EPS-induced contractile force of the models. This validated new human muscle MPS will benefit development of drugs against muscle wasting diseases. Moreover, our Matrigel 3D bioprinting platform will allow engineering of non-self-organizing complex human 3D MPS.
AUTHOR Asulin, Masha and Michael, Idan and Shapira, Assaf and Dvir, Tal
Title One-Step 3D Printing of Heart Patches with Built-In Electronics for Performance Regulation [Abstract]
Year 2021
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Three dimensional (3D) printing of heart patches usually provides the ability to precisely control cell location in 3D space. Here, one-step 3D printing of cardiac patches with built-in soft and stretchable electronics is reported. The tissue is simultaneously printed using three distinct bioinks for the cells, for the conducting parts of the electronics and for the dielectric components. It is shown that the hybrid system can withstand continuous physical deformations as those taking place in the contracting myocardium. The electronic patch is flexible, stretchable, and soft, and the electrodes within the printed patch are able to monitor the function of the engineered tissue by providing extracellular potentials. Furthermore, the system allowed controlling tissue function by providing electrical stimulation for pacing. It is envisioned that such transplantable patches may regain heart contractility and allow the physician to monitor the implant function as well as to efficiently intervene from afar when needed.
AUTHOR Madiedo-Podvrsan, Sabrina and Belaïdi, Jean-Philippe and Desbouis, Stephanie and Simonetti, Lucie and Ben-Khalifa, Youcef and Soeur, Jérémie and Rielland, Maïté
Title Utilization of patterned bioprinting for heterogeneous and physiologically representative reconstructed epidermal skin models [Abstract]
Year 2021
Journal/Proceedings Scientific Reports
Reftype Madiedo-Podvrsan2021
DOI/URL DOI
Abstract
Organotypic skin tissue models have decades of use for basic research applications, the treatment of burns, and for efficacy/safety evaluation studies. The complex and heterogeneous nature of native human skin however creates difficulties for the construction of physiologically comparable organotypic models. Within the present study, we utilized bioprinting technology for the controlled deposition of separate keratinocyte subpopulations to create a reconstructed epidermis with two distinct halves in a single insert, each comprised of a different keratinocyte sub-population, in order to better model heterogonous skin and reduce inter-sample variability. As an initial proof-of-concept, we created a patterned epidermal skin model using GPF positive and negative keratinocyte subpopulations, both printed into 2 halves of a reconstructed skin insert, demonstrating the feasibility of this approach. We then demonstrated the physiological relevance of this bioprinting technique by generating a heterogeneous model comprised of dual keratinocyte population with either normal or low filaggrin expression. The resultant model exhibited a well-organized epidermal structure with each half possessing the phenotypic characteristics of its constituent cells, indicative of a successful and stable tissue reconstruction. This patterned skin model aims to mimic the edge of lesions as seen in atopic dermatitis or ichthyosis vulgaris, while the use of two populations within a single insert allows for paired statistics in evaluation studies, likely increasing study statistical power and reducing the number of models required per study. This is the first report of human patterned epidermal model using a predefined bioprinted designs, and demonstrates the relevance of bioprinting to faithfully reproduce human skin microanatomy.
AUTHOR Kajtez, Janko and Buchmann, Sebastian and Vasudevan, Shashank and Birtele, Marcella and Rocchetti, Stefano and Pless, Christian Jonathan and Heiskanen, Arto and Barker, Roger A. and Martínez-Serrano, Alberto and Parmar, Malin and Lind, Johan Ulrik and Emnéus, Jenny
Title 3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices [Abstract]
Year 2020
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.
AUTHOR Monferrer, Ezequiel and Martín-Vañó, Susana and Carretero, Aitor and García-Lizarribar, Andrea and Burgos-Panadero, Rebeca and Navarro, Samuel and Samitier, Josep and Noguera, Rosa
Title A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior [Abstract]
Year 2020
Journal/Proceedings Scientific Reports
Reftype Monferrer2020
DOI/URL DOI
Abstract
Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young’s modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
AUTHOR Benmeridja, Lara and De Moor, Lise and De Maere, Elisabeth and Vanlauwe, Florian and Ryx, Michelle and Tytgat, Liesbeth and Vercruysse, Chris and Dubruel, Peter and Van Vlierberghe, Sandra and Blondeel, Phillip and Declercq, Heidi
Title High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting [Abstract]
Year 2020
Journal/Proceedings Journal of Tissue Engineering and Regenerative Medicine
Reftype
DOI/URL DOI
Abstract
Abstract For patients with soft tissue defects, repair with autologous in vitro engineered adipose tissue could be a promising alternative to current surgical therapies. A volume-persistent engineered adipose tissue construct under in vivo conditions can only be achieved by early vascularization after transplantation. The combination of 3D bioprinting technology with self-assembling microvascularized units as building blocks can potentially answer the need for a microvascular network. In the present study, co-culture spheroids combining adipose-derived stem cells (ASC) and human umbilical vein endothelial cells (HUVEC) were created with an ideal geometry for bioprinting. When applying the favourable seeding technique and condition, compact viable spheroids were obtained, demonstrating high adipogenic differentiation and capillary-like network formation after 7 and 14 days of culture, as shown by live/dead analysis, immunohistochemistry and RT-qPCR. Moreover, we were able to successfully 3D bioprint the encapsulated spheroids, resulting in compact viable spheroids presenting capillary-like structures, lipid droplets and spheroid outgrowth after 14 days of culture. This is the first study that generates viable high-throughput (pre-)vascularized adipose microtissues as building blocks for bioprinting applications using a novel ASC/HUVEC co-culture spheroid model, which enables both adipogenic differentiation while simultaneously supporting the formation of prevascular-like structures within engineered tissues in vitro.
AUTHOR Dubey, Nileshkumar and Ferreira, Jessica A. and Daghrery, Arwa and Aytac, Zeynep and Malda, Jos and Bhaduri, Sarit B. and Bottino, Marco C.
Title Highly Tunable Bioactive Fiber-Reinforced Hydrogel for Guided Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
One of the most damaging pathologies that affects the health of both soft and hard tissues around the tooth is periodontitis. Clinically, periodontal tissue destruction has been managed by an integrated approach involving elimination of injured tissues followed by regenerative strategies with bone substitutes and/or barrier membranes. Regrettably, a barrier membrane with predictable mechanical integrity and multifunctional therapeutic features has yet to be established. Herein, we report a fiber-reinforced hydrogel with unprecedented tunability in terms of mechanical competence and therapeutic features by integration of highly porous poly(ε-caprolactone) fibrous mesh(es) with well-controlled 3D architecture into bioactive amorphous magnesium phosphate-laden gelatin methacryloyl hydrogels. The presence of amorphous magnesium phosphate and PCL mesh in the hydrogel can control the mechanical properties and improve the osteogenic ability, opening a tremendous opportunity in guided bone regeneration (GBR). Results demonstrate that the presence of PCL meshes fabricated via melt electrowriting can delay hydrogel degradation preventing soft tissue invasion and providing the mechanical barrier to allow time for slower migrating progenitor cells to participate in bone regeneration due to their ability to differentiate into bone-forming cells. Altogether, our approach offers a platform technology for the development of the next-generation of GBR membranes with tunable mechanical and therapeutic properties to amplify bone regeneration in compromised sites.
AUTHOR Peiffer, Quentin C. and de Ruijter, Mylène and van Duijn, Joost and Crottet, Denis and Dominic, Ernst and Malda, Jos and Castilho, Miguel
Title Melt electrowriting onto anatomically relevant biodegradable substrates: Resurfacing a diarthrodial joint [Abstract]
Year 2020
Journal/Proceedings Materials & Design
Reftype
DOI/URL URL DOI
Abstract
Three-dimensional printed hydrogel constructs with well-organized melt electrowritten (MEW) fibre-reinforcing scaffolds have been demonstrated as a promising regenerative approach to treat small cartilage defects. Here, we investige how to translate the fabrication of small fibre-reinforced structures on flat surfaces to anatomically relevant structures. In particular, the accurate deposition of MEW-fibres onto curved surfaces of conductive and non-conductive regenerative biomaterials is studied. This study reveals that clinically relevant materials with low conductivities are compatible with resurfacing with organized MEW fibres. Importantly, accurate patterning on non-flat surfaces was successfully shown, provided that a constant electrical field strength and an electrical force normal to the substrate material is maintained. Furthermore, the application of resurfacing the geometry of the medial human femoral condyle is confirmed by the fabrication of a personalised osteochondral implant. The implant composed of an articular cartilage-resident chondroprogenitor cells (ACPCs)-laden hydrogel reinforced with a well-organized MEW scaffold retained its personalised shape, improved its compressive properties and supported neocartilage formation after 28 days in vitro culture. Overall, this study establishes the groundwork for translating MEW from planar and non-resorbable material substrates to anatomically relevant geometries and regenerative materials that the regenerative medicine field aims to create.
AUTHOR Wei, Zhengxi and Liu, Xue and Ooka, Masato and Zhang, Li and Song, Min Jae and Huang, Ruili and Kleinstreuer, Nicole C. and Simeonov, Anton and Xia, Menghang and Ferrer, Marc
Title Two-Dimensional Cellular and Three-Dimensional Bio-Printed Skin Models to Screen Topical-Use Compounds for Irritation Potential [Abstract]
Year 2020
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Assessing skin irritation potential is critical for the safety evaluation of topical drugs and other consumer products such as cosmetics. The use of advanced cellular models, as an alternative to replace animal testing in the safety evaluation for both consumer products and ingredients, is already mandated by law in the European Union (EU) and other countries. However, there has not yet been a large-scale comparison of the effects of topical-use compounds in different cellular skin models. This study assesses the irritation potential of topical-use compounds in different cellular models of the skin that are compatible with high throughput screening (HTS) platforms. A set of 451 topical-use compounds were first tested for cytotoxic effects using two-dimensional (2D) monolayer models of primary neonatal keratinocytes and immortalized human keratinocytes. Forty-six toxic compounds identified from the initial screen with the monolayer culture systems were further tested for skin irritation potential on reconstructed human epidermis (RhE) and full thickness skin (FTS) three-dimensional (3D) tissue model constructs. Skin irritation potential of the compounds was assessed by measuring tissue viability, trans-epithelial electrical resistance (TEER), and secretion of cytokines interleukin 1 alpha (IL-1α) and interleukin 18 (IL-18). Among known irritants, high concentrations of methyl violet and methylrosaniline decreased viability, lowered TEER, and increased IL-1α secretion in both RhE and FTS models, consistent with irritant properties. However, at low concentrations, these two compounds increased IL-18 secretion without affecting levels of secreted IL-1α, and did not reduce tissue viability and TEER, in either RhE or FTS models. This result suggests that at low concentrations, methyl violet and methylrosaniline have an allergic potential without causing irritation. Using both HTS-compatible 2D cellular and 3D tissue skin models, together with irritation relevant activity endpoints, we obtained data to help assess the irritation effects of topical-use compounds and identify potential dermal hazards.
AUTHOR Noor, Nadav and Shapira, Assaf and Edri, Reuven and Gal, Idan and Wertheim, Lior and Dvir, Tal
Title 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts [Abstract]
Year 2019
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Generation of thick vascularized tissues that fully match the patient still remains an unmet challenge in cardiac tissue engineering. Here, a simple approach to 3D-print thick, vascularized, and perfusable cardiac patches that completely match the immunological, cellular, biochemical, and anatomical properties of the patient is reported. To this end, a biopsy of an omental tissue is taken from patients. While the cells are reprogrammed to become pluripotent stem cells, and differentiated to cardiomyocytes and endothelial cells, the extracellular matrix is processed into a personalized hydrogel. Following, the two cell types are separately combined with hydrogels to form bioinks for the parenchymal cardiac tissue and blood vessels. The ability to print functional vascularized patches according to the patient's anatomy is demonstrated. Blood vessel architecture is further improved by mathematical modeling of oxygen transfer. The structure and function of the patches are studied in vitro, and cardiac cell morphology is assessed after transplantation, revealing elongated cardiomyocytes with massive actinin striation. Finally, as a proof of concept, cellularized human hearts with a natural architecture are printed. These results demonstrate the potential of the approach for engineering personalized tissues and organs, or for drug screening in an appropriate anatomical structure and patient-specific biochemical microenvironment.
AUTHOR Daly, Andrew C. and Kelly, Daniel J.
Title Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers [Abstract]
Year 2019
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Successful tissue engineering requires the generation of human scale implants that mimic the structure, composition and mechanical properties of native tissues. Here, we report a novel biofabrication strategy that enables the engineering of structurally organised tissues by guiding the growth of cellular spheroids within arrays of 3D printed polymeric microchambers. With the goal of engineering stratified articular cartilage, inkjet bioprinting was used to deposit defined numbers of mesenchymal stromal cells (MSCs) and chondrocytes into pre-printed microchambers. These jetted cell suspensions rapidly underwent condensation within the hydrophobic microchambers, leading to the formation of organised arrays of cellular spheroids. The microchambers were also designed to provide boundary conditions to these spheroids, guiding their growth and eventual fusion, leading to the development of stratified cartilage tissue with a depth-dependant collagen fiber architecture that mimicked the structure of native articular cartilage. Furthermore, the composition and biomechanical properties of the bioprinted cartilage was also comparable to the native tissue. Using multi-tool biofabrication, we were also able to engineer anatomically accurate, human scale, osteochondral templates by printing this microchamber system on top of a hypertrophic cartilage region designed to support endochondral bone formation and then maintaining the entire construct in long-term bioreactor culture to enhance tissue development. This bioprinting strategy provides a versatile and scalable approach to engineer structurally organised cartilage tissues for joint resurfacing applications.
AUTHOR Derr, Kristy and Zou, Jinyun and Luo, Keren and Song, Min Jae and Sittampalam, G. Sitta and Zhou, Chao and Michael, Samuel and Ferrer, Marc and Derr, Paige
Title Fully 3D Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function [Abstract]
Year 2019
Journal/Proceedings Tissue Engineering Part C: Methods
Reftype
DOI/URL DOI
Abstract
Development of high throughput, reproducible, three-dimensional bioprinted skin equivalents that are morphologically and functionally comparable to native skin tissue is advancing research in skin diseases, and providing a physiologically relevant platform for the development of therapeutics, transplants for regenerative medicine, and testing of skin products like cosmetics. Current protocols for the production of engineered skin rafts are limited in their ability to control three dimensional geometry of the structure and contraction leading to variability of skin function between constructs. Here we describe a method for the biofabrication of skin equivalents that are fully bioprinted using an open market bioprinter, made with commercially available primary cells and natural hydrogels. The unique hydrogel formulation allows for the production of a human-like skin equivalent with minimal lateral tissue contraction in a multiwell plate format, thus making them suitable for high throughput bioprinting in a single print with fast print and relatively short incubation times. The morphology and barrier function of the fully three-dimensional bioprinted skin equivalents are validated by immunohistochemistry staining, optical coherence tomography, and permeation assays.
AUTHOR Gonzalez-Fernandez, T. and Rathan, S. and Hobbs, C. and Pitacco, P. and Freeman, F. E. and Cunniffe, G. M. and Dunne, N. J. and McCarthy, H. O. and Nicolosi, V. and O'Brien, F. J. and Kelly, D. J.
Title Pore-forming bioinks to enable Spatio-temporally defined gene delivery in bioprinted tissues [Abstract]
Year 2019
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
The regeneration of complex tissues and organs remains a major clinical challenge. With a view towards bioprinting such tissues, we developed a new class of pore-forming bioink to spatially and temporally control the presentation of therapeutic genes within bioprinted tissues. By blending sacrificial and stable hydrogels, we were able to produce bioinks whose porosity increased with time following printing. When combined with amphipathic peptide-based plasmid DNA delivery, these bioinks supported enhanced non-viral gene transfer to stem cells in vitro. By modulating the porosity of these bioinks, it was possible to direct either rapid and transient (pore-forming bioinks), or slower and more sustained (solid bioinks) transfection of host or transplanted cells in vivo. To demonstrate the utility of these bioinks for the bioprinting of spatially complex tissues, they were next used to zonally position stem cells and plasmids encoding for either osteogenic (BMP2) or chondrogenic (combination of TGF-β3, BMP2 and SOX9) genes within networks of 3D printed thermoplastic fibers to produce mechanically reinforced, gene activated constructs. In vivo, these bioprinted tissues supported the development of a vascularised, bony tissue overlaid by a layer of stable cartilage. When combined with multiple-tool biofabrication strategies, these gene activated bioinks can enable the bioprinting of a wide range of spatially complex tissues.
AUTHOR Laternser, Sandra and Keller, Hansjoerg and Leupin, Olivier and Rausch, Martin and Graf-Hausner, Ursula and Rimann, Markus
Title A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues [Abstract]
Year 2018
Journal/Proceedings SLAS TECHNOLOGY: Translating Life Sciences Innovation
Reftype
DOI/URL DOI
Abstract
Two-dimensional (2D) cell cultures do not reflect the in vivo situation, and thus it is important to develop predictive three-dimensional (3D) in vitro models with enhanced reliability and robustness for drug screening applications. Treatments against muscle-related diseases are becoming more prominent due to the growth of the aging population worldwide. In this study, we describe a novel drug screening platform with automated production of 3D musculoskeletal-tendon-like tissues. With 3D bioprinting, alternating layers of photo-polymerized gelatin-methacryloyl-based bioink and cell suspension tissue models were produced in a dumbbell shape onto novel postholder cell culture inserts in 24-well plates. Monocultures of human primary skeletal muscle cells and rat tenocytes were printed around and between the posts. The cells showed high viability in culture and good tissue differentiation, based on marker gene and protein expressions. Different printing patterns of bioink and cells were explored and calcium signaling with Fluo4-loaded cells while electrically stimulated was shown. Finally, controlled co-printing of tenocytes and myoblasts around and between the posts, respectively, was demonstrated followed by co-culture and co-differentiation. This screening platform combining 3D bioprinting with a novel microplate represents a promising tool to address musculoskeletal diseases.
AUTHOR de Ruijter, Mylène and Ribeiro, Alexandre and Dokter, Inge and Castilho, Miguel and Malda, Jos
Title Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs [Abstract]
Year 2018
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Fabrication of biomimetic tissues holds much promise for the regeneration of cells or organs that are lost or damaged due to injury or disease. To enable the generation of complex, multicellular tissues on demand, the ability to design and incorporate different materials and cell types needs to be improved. Two techniques are combined: extrusion-based bioprinting, which enables printing of cell-encapsulated hydrogels; and melt electrowriting (MEW), which enables fabrication of aligned (sub)-micrometer fibers into a single-step biofabrication process. Composite structures generated by infusion of MEW fiber structures with hydrogels have resulted in mechanically and biologically competent constructs; however, their preparation involves a two-step fabrication procedure that limits freedom of design of microfiber architectures and the use of multiple materials and cell types. How convergence of MEW and extrusion-based bioprinting allows fabrication of mechanically stable constructs with the spatial distributions of different cell types without compromising cell viability and chondrogenic differentiation of mesenchymal stromal cells is demonstrated for the first time. Moreover, this converged printing approach improves freedom of design of the MEW fibers, enabling 3D fiber deposition. This is an important step toward biofabrication of voluminous and complex hierarchical structures that can better resemble the characteristics of functional biological tissues.
AUTHOR Cunniffe, Gráinne and Gonzalez-Fernandez, Tomas and Daly, Andrew and Nelson Sathy, Binulal and Jeon, Oju and Alsberg, Eben and J. Kelly, Daniel
Title Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering [Abstract]
Year 2017
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-g-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bonemarrow-derived mesenchymal stemcells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization andmineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.
AUTHOR Dusserre, Nathalie and Stachowicz, Marie-Laure and Medina, Chantal and Henri, Baptiste and Fricain, Jean-Christophe and Paris, François and Oliveira, Hugo
Title Microvalve bioprinting as a biofabrication tool to decipher tumor and endothelial cell crosstalk: Application to a simplified glioblastoma model [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
Bioprinting technologies are powerful new bioengineering tools that can spatially reproduce multiple microenvironmental cues in a highly controlled, tunable, and precise manner. In this study, microvalve bioprinting technology was successfully used to print in close proximity endothelial and tumor cells at higher concentrations than previously thought possible, while preserving their viability. We propose that the resulting multicellular models, bioprinted in a controlled extracellular matrix microenvironment, are well-suited to study endothelial and cancer cell crosstalk within a cancer niche. As proof of concept, microvalve bioprinting was applied to the bioengineering of a simplified glioblastoma model in which biological processes involved in tumor expansion, such as tumor cell invasion patterns, cell proliferation, and senescence could be easily visualized and quantified. In this model, U251 glioblastoma cells and primary human umbilical vein endothelial cells (HUVECs) exhibited good printability and high viability after printing. U251 cells formed physiologically relevant clusters and invasion margins, while HUVECs generated vascular-like networks when primary fibroblasts were added to the model. An oxidative stress mimicking the one encountered within a tumor microenvironment during radiotherapy or genotoxic chemotherapy was shown to both diminish endothelial cells proliferation and to increase their senescence. Results also suggested that stressed glioblastoma cells may alter normal endothelial cell proliferation but not impact their senescence. This data demonstrates the potential of microvalve bioprinting to fabricate in vitro models that can help decipher endothelial and tumor cell crosstalk, within controlled and modulable microenvironments, and can then be used to address critical questions in the context of cancer recurrence.
AUTHOR Freeman, Fiona E. and Pitacco, Pierluca and van Dommelen, Lieke H. A. and Nulty, Jessica and Browe, David C. and Shin, Jung-Youn and Alsberg, Eben and Kelly, Daniel J.
Title 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration [Abstract]
Year 2020
Journal/Proceedings Science Advances
Reftype
DOI/URL URL DOI
Abstract
Therapeutic growth factor delivery typically requires supraphysiological dosages, which can cause undesirable off-target effects. The aim of this study was to 3D bioprint implants containing spatiotemporally defined patterns of growth factors optimized for coupled angiogenesis and osteogenesis. Using nanoparticle functionalized bioinks, it was possible to print implants with distinct growth factor patterns and release profiles spanning from days to weeks. The extent of angiogenesis in vivo depended on the spatial presentation of vascular endothelial growth factor (VEGF). Higher levels of vessel invasion were observed in implants containing a spatial gradient of VEGF compared to those homogenously loaded with the same total amount of protein. Printed implants containing a gradient of VEGF, coupled with spatially defined BMP-2 localization and release kinetics, accelerated large bone defect healing with little heterotopic bone formation. This demonstrates the potential of growth factor printing, a putative point of care therapy, for tightly controlled tissue regeneration.
AUTHOR Lee, Ji Seung and Park, Hae Sang and Jung, Harry and Lee, Hanna and Hong, Heesun and Lee, Young Jin and Suh, Ye Ji and Lee, Ok Joo and Kim, Soon Hee and Park, Chan Hum
Title 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells [Abstract]
Year 2020
Journal/Proceedings Additive Manufacturing
Reftype
DOI/URL URL DOI
Abstract
Cartilage regeneration is challenging because of the poor intrinsic self-repair capacity of avascular tissue. Three-dimensional (3D) bioprinting has gained significant attention in the field of tissue engineering and is a promising technology to overcome current difficulties in cartilage regeneration. Although bioink is an essential component of bioprinting technology, several challenges remain in satisfying different requirements for ideal bioink, including biocompatibility and printability based on specific biological requirements. Gelatin and hyaluronic acid (HA) have been shown to be ideal biomimetic hydrogel sources for cartilage regeneration. However, controlling their structure, mechanical properties, biocompatibility, and degradation rate for cartilage repair remains a challenge. Here, we show a photocurable bioink created by hybridization of gelatin methacryloyl (GelMA) and glycidyl-methacrylated HA (GMHA) for material extrusion 3D bioprinting in cartilage regeneration. GelMA and GMHA were mixed in various ratios, and the mixture of 7% GelMA and 5% GMHA bioink (G7H5) demonstrated the most reliable mechanical properties, rheological properties, and printability. This G7H5 bioink allowed us to build a highly complex larynx structure, including the hyoid bone, thyroid cartilage, cricoid cartilage, arytenoid cartilage, and cervical trachea. This bioink also provided an excellent microenvironment for chondrogenesis of tonsil-derived mesenchymal stem cells (TMSCs) in vitro and in vivo. In summary, this study presents the ideal formulation of GelMA/GMHA hybrid bioink to generate a well-suited photocurable bioink for cartilage regeneration of TMSCs using a material extrusion bioprinter, and could be applied to cartilage tissue engineering.
AUTHOR Liu, Xue and Michael, Samuel and Bharti, Kapil and Ferrer, Marc and Song, Min Jae
Title A biofabricated vascularized skin model of atopic dermatitis for preclinical studies [Abstract]
Year 2020
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) biofabrication techniques enable the production of multicellular tissue models as assay platforms for drug screening. The increased cellular and physiological complexity in these 3D tissue models should recapitulate the relevant biological environment found in the body. Here we describe the use of 3D bioprinting techniques to fabricate skin equivalent tissues of varying physiological complexity, including human epidermis, non-vascularized and vascularized full-thickness skin tissue equivalents, in a multi-well platform to enable drug screening. Human keratinocytes, fibroblasts, and pericytes, and induced pluripotent stem cell (iPSC)-derived endothelial cells were used in the biofabrication process to produce the varying complexity. The skin equivalents exhibit the correct structural markers of dermis and epidermis stratification, with physiological functions of the skin barrier. The robustness, versatility and reproducibility of the biofabrication techniques are further highlighted by the generation of atopic dermatitis (AD)-disease like tissues. These AD models demonstrate several clinical hallmarks of the disease, including: (i) spongiosis and hyperplasia; (ii) early and terminal expression of differentiation proteins; and (iii) increases in levels of pro-inflammatory cytokines. We show the pre-clinical relevance of the biofabricated AD tissue models to correct disease phenotype by testing the effects of dexamethasone, an anti-inflammatory corticosteroid, and three Janus Kinase inhibitors from clinical trials for AD. This study demonstrates the development of a versatile and reproducible bioprinting approach to create human skin equivalents with a range of cellular complexity for disease modelling. In addition, we establish several assay readouts that are quantifiable, robust, AD relevant, and can be scaled up for compound screening. The results show that the cellular complexity of the tissues develops a more physiologically relevant AD disease model. Thus, the skin models in this study offer an in vitro approach for the rapid understanding of pathological mechanisms, and testing for efficacy of action and toxic effects of drugs.
AUTHOR Colle, Julien and Blondeel, Phillip and De Bruyne, Axelle and Bochar, Silke and Tytgat, Liesbeth and Vercruysse, Chris and Van Vlierberghe, Sandra and Dubruel, Peter and Declercq, Heidi
Title Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering [Abstract]
Year 2020
Journal/Proceedings Journal of Materials Science: Materials in Medicine
Reftype Colle2020
DOI/URL DOI
Abstract
The increasing number of mastectomies results in a greater demand for breast reconstruction characterized by simplicity and a low complication profile. Reconstructive surgeons are investigating tissue engineering (TE) strategies to overcome the current surgical drawbacks. 3D bioprinting is the rising technique for the fabrication of large tissue constructs which provides a potential solution for unmet clinical needs in breast reconstruction building on decades of experience in autologous fat grafting, adipose-derived mesenchymal stem cell (ASC) biology and TE. A scaffold was bioprinted using encapsulated ASC spheroids in methacrylated gelatin ink (GelMA). Uniform ASC spheroids with an ideal geometry and diameter for bioprinting were formed, using a high-throughput non-adhesive agarose microwell system. ASC spheroids in adipogenic differentiation medium (ADM) were evaluated through live/dead staining, histology (HE, Oil Red O), TEM and RT-qPCR. Viable spheroids were obtained for up to 14 days post-printing and showed multilocular microvacuoles and successful differentiation toward mature adipocytes shown by gene expression analysis. Moreover, spheroids were able to assemble at random in GelMA, creating a macrotissue. Combining the advantage of microtissues to self-assemble and the controlled organization by bioprinting technologies, these ASC spheroids can be useful as building blocks for the engineering of soft tissue implants.
AUTHOR Daly, Andrew C. and Pitacco, Pierluca and Nulty, Jessica and Cunniffe, Gráinne M. and Kelly, Daniel J.
Title 3D printed microchannel networks to direct vascularisation during endochondral bone repair [Abstract]
Year 2018
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.
AUTHOR Ng, Wei Long and Qi, Jovina Tan Zhi and Yeong, Wai Yee and Naing, May Win
Title Proof-of-concept: 3D bioprinting of pigmented human skin constructs [Abstract]
Year 2018
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) pigmented human skin constructs have been fabricated using a 3D bioprinting approach. The 3D pigmented human skin constructs are obtained from using three different types of skin cells (keratinocytes, melanocytes and fibroblasts from three different skin donors) and they exhibit similar constitutive pigmentation (pale pigmentation) as the skin donors. A two-step drop-on-demand bioprinting strategy facilitates the deposition of cell droplets to emulate the epidermal melanin units (pre-defined patterning of keratinocytes and melanocytes at the desired positions) and manipulation of the microenvironment to fabricate 3D biomimetic hierarchical porous structures found in native skin tissue. The 3D bioprinted pigmented skin constructs are compared to the pigmented skin constructs fabricated by conventional a manual-casting approach; in-depth characterization of both the 3D pigmented skin constructs has indicated that the 3D bioprinted skin constructs have a higher degree of resemblance to native skin tissue in term of the presence of well-developed stratified epidermal layers and the presence of a continuous layer of basement membrane proteins as compared to the manually-cast samples. The 3D bioprinting approach facilitates the development of 3D in vitro pigmented human skin constructs for potential toxicology testing and fundamental cell biology research.
AUTHOR Kessel, Benjamin and Lee, Mihyun and Bonato, Angela and Tinguely, Yann and Tosoratti, Enrico and Zenobi-Wong, Marcy
Title 3D Bioprinting of Macroporous Materials Based on Entangled Hydrogel Microstrands [Abstract]
Year 2020
Journal/Proceedings Advanced Science
Reftype
DOI/URL DOI
Abstract
Abstract Hydrogels are excellent mimetics of mammalian extracellular matrices and have found widespread use in tissue engineering. Nanoporosity of monolithic bulk hydrogels, however, limits mass transport of key biomolecules. Microgels used in 3D bioprinting achieve both custom shape and vastly improved permissivity to an array of cell functions, however spherical-microbead-based bioinks are challenging to upscale, are inherently isotropic, and require secondary crosslinking. Here, bioinks based on high-aspect-ratio hydrogel microstrands are introduced to overcome these limitations. Pre-crosslinked, bulk hydrogels are deconstructed into microstrands by sizing through a grid with apertures of 40–100 µm. The microstrands are moldable and form a porous, entangled structure, stable in aqueous medium without further crosslinking. Entangled microstrands have rheological properties characteristic of excellent bioinks for extrusion bioprinting. Furthermore, individual microstrands align during extrusion and facilitate the alignment of myotubes. Cells can be placed either inside or outside the hydrogel phase with >90% viability. Chondrocytes co-printed with the microstrands deposit abundant extracellular matrix, resulting in a modulus increase from 2.7 to 780.2 kPa after 6 weeks of culture. This powerful approach to deconstruct bulk hydrogels into advanced bioinks is both scalable and versatile, representing an important toolbox for 3D bioprinting of architected hydrogels.
AUTHOR Azim, N. and Hart, C. and Sommerhage, F. and Aubin, M. and Hickman, J. J. and Rajaraman, S.
Title Precision Plating of Human Electrogenic Cells on Microelectrodes Enhanced With Precision Electrodeposited Nano-Porous Platinum for Cell-Based Biosensing Applications [Abstract]
Year 2019
Journal/Proceedings Journal of Microelectromechanical Systems
Reftype
DOI/URL URL DOI
Abstract
Microelectrode Arrays are established platforms for biosensing applications; however, limitations in electrode impedance and cell-electrode coupling still exist. In this paper, the SNR of 25 μm diameter gold (Au) microelectrodes was improved by decreasing the impedance with precision electrodeposition. SEM determined that N-P Pt. microelectrodes had nanoporous structures that filled the insulation cylinders. EIS, CV, and RMS noise measurements concluded that the optimized electrodeposition of N-P Pt. led to a lowered impedance of 18.36 kΩ ± 2.6 kΩ at 1 kHz, a larger double layer capacitance of 73 nF, and lowered RMS noise of 2.08±0.16 μV as compared to the values for Au of 159 kΩ ± 28 kΩ at 1 kHz, 17nF, and 3.14 ± 0.42 μV, respectively. Human motoneurons and human cardiomyocytes were cultured on N-P Pt. devices to assess their biocompatibility and signal quality. In order to improve the cell-electrode coupling, a precision plating technique was used. Both cell types were electrically active on devices for up to 10 weeks, demonstrated improved SNR, and expected responses to precision chemical and electrical stimulation. The modification of Au microelectrodes with nanomaterials in combination with precision culturing of human cell types provides cost effective, highly sensitive, well coupled and relevant biosensing platforms for medical and pharmaceutical research.
AUTHOR Schaffner, Manuel and R{"u}hs, Patrick A. and Coulter, Fergal and Kilcher, Samuel and Studart, Andr{'e} R.
Title 3D printing of bacteria into functional complex materials [Abstract]
Year 2017
Journal/Proceedings Science Advances
Reftype
DOI/URL URL DOI
Abstract
Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of {textquotedblleft}living materials{textquotedblright} capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.
AUTHOR Govindharaj, Mano and Al Hashemi, Noura Sayed and Soman, Soja Saghar and Vijayavenkataraman, Sanjairaj
Title Bioprinting of bioactive tissue scaffolds from ecologically-destructive fouling tunicates [Abstract]
Year 2022
Journal/Proceedings Journal of Cleaner Production
Reftype
DOI/URL URL DOI
Abstract
Urochordates are the closest invertebrate relative to humans and commonly referred to as tunicates, a name ascribed to their leathery outer “tunic”. The tunic is the outer covering of the organism which functions as the exoskeleton and is rich in carbohydrates and proteins. Invasive or fouling tunicates pose a great threat to the indigenous marine ecosystem and governments spend several hundred thousand dollars for tunicate management, considering the huge adverse economic impact it has on the shipping and fishing industries. In this work, the environmentally destructive colonizing tunicate species of Polyclinum constellatum was successfully identified in the coast of Abu Dhabi and methods of sustainably using it as wound-dressing materials, decellularized extra-cellular matrix (dECM) scaffolds for tissue engineering applications and bioinks for bioprinting of tissue constructs for regenerative medicine are proposed. The intricate three-dimensional nanofibrous cellulosic networks in the tunic remain intact even after the multi-step process of decellularization and lyophilization. The lyophilized dECM tunics possess excellent biocompatibility and remarkable tensile modulus of 3.85 ± 0.93 MPa compared to ∼0.1–1 MPa of other hydrogel systems. This work demonstrates the use of lyophilized tunics as wound-dressing materials, having outperformed the commercial dressing materials with a capacity of absorbing 20 times its weight in the dry state. This work also demonstrates the biocompatibility of dECM scaffold and dECM-derived bioink (3D bioprinting with Mouse Embryonic Fibroblasts (MEFs)). Both dECM scaffolds and bioprinted dECM-based tissue constructs show enhanced metabolic activity and cell proliferation over time. Sustainable utilization of dECM-based biomaterials from ecologically-destructive fouling tunicates proposed in this work helps preserve the marine ecosystem, shipping and fishing industries worldwide, and mitigate the huge cost spent for tunicate management.
AUTHOR Cao, Chuanliang and Huang, Pengren and Prasopthum, Aruna and Parsons, Andrew J. and Ai, Fanrong and Yang, Jing
Title Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations [Abstract]
Year 2022
Journal/Proceedings Biomater. Sci.
Reftype
DOI/URL DOI
Abstract
3D printed bioactive glass or bioceramic particle reinforced composite scaffolds for bone tissue engineering currently suffer from low particle concentration (100% breaking strain) by adding poly(ethylene glycol) which is biocompatible and FDA approved. The scaffolds require no post-printing washing to remove hazardous components. More exposure of HA microparticles on strut surfaces is enabled by incorporating higher HA concentrations. Compared to scaffolds with 72 wt% HA{,} scaffolds with higher HA content (90 wt%) enhance matrix formation but not new bone volume after 12 weeks implantation in rat calvarial defects. Histological analyses demonstrate that bone regeneration within the 3D printed scaffolds is via intramembranous ossification and starts in the central region of pores. Fibrous tissue that resembles non-union tissue within bone fractures is formed within pores that do not have new bone. The amount of blood vessels is similar between scaffolds with mainly fibrous tissue and those with more bone tissue{,} suggesting vascularization is not a deciding factor for determining the type of tissues regenerated within the pores of 3D printed scaffolds. Multinucleated immune cells are commonly present in all scaffolds surrounding the struts{,} suggesting a role of managing inflammation in bone regeneration within 3D printed scaffolds.
AUTHOR Yan Li and Lijing Huang and Guangpin Tai and Feifei Yan and Lin Cai and Chenxing Xin and Shamoon {Al Islam}
Title Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment [Abstract]
Year 2022
Journal/Proceedings Composites Part A: Applied Science and Manufacturing
Reftype
DOI/URL URL DOI
Abstract
The treatment of tumour-related bone defects should ideally combine bone regeneration with tumour treatment. Additive manufacturing (AM) could feasibly place functional bone-repair materials within composite materials with functional-grade structures, giving them bone repair and anti-tumour effects. Magnetothermal therapy is a promising non-invasive method of tumour treatment that has attracted increasing attention. In this study, we prepared novel hydrogel composite scaffolds of polyvinyl alcohol/sodium alginate/hydroxyapatite (PVA/SA/HA) at low temperature via AM. The scaffolds were loaded with various concentrations of magnetic graphene oxide (MGO) @Fe3O4 nanoparticles. The scaffolds were characterised by fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA), which showed that the scaffolds have good moulding qualities and strong hydrogen bonding between the MGO/PVA/SA/HA components. TGA analysis demonstrated the expected thermal stability of the MGO and scaffolds. Thermal effects can be adjusted by varying the contents of MGO and the strength of an external alternating magnetic field. The prepared MGO hydrogel composite scaffolds enhance biological functions and support bone mesenchymal stem cell differentiation in vitro. The scaffolds also show favourable anti-tumour characteristics with effective magnetothermal conversion in vivo.
AUTHOR Zhang, Xiao and Liu, Yang and Zuo, Qiang and Wang, Qingyun and Li, Zuxi and Yan, Kai and Yuan, Tao and Zhang, Yi and Shen, Kai and Xie, Rui and Fan, Weimin
Title 3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair [Abstract]
Year 2021
Journal/Proceedings International Journal of Bioprinting; Vol 7, No 4 (2021)
Reftype
DOI/URL URL DOI
Abstract
Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.
AUTHOR Cernencu, Alexandra I. and Lungu, Adriana and Dragusin, Diana M. and Stancu, Izabela C. and Dinescu, Sorina and Balahura, Liliana R. and Mereuta, Paul and Costache, Marieta and Iovu, Horia
Title 3D Bioprinting of Biosynthetic Nanocellulose-Filled GelMA Inks Highly Reliable for Soft Tissue-Oriented Constructs [Abstract]
Year 2021
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Bioink-formulations based on gelatin methacrylate combined with oxidized cellulose nanofibrils are employed in the present study. The parallel investigation of the printing performance, morphological, swelling, and biological properties of the newly developed hydrogels was performed, with inks prepared using methacrylamide-modified gelatins of fish or bovine origin. Scaffolds with versatile and well-defined internal structure and high shape fidelity were successfully printed due to the high viscosity and shear-thinning behavior of formulated inks and then photo-crosslinked. The biocompatibility of 3D-scaffolds was surveyed using human adipose stem cells (hASCs) and high viability and proliferation rates were obtained when in contact with the biomaterial. Furthermore, bioprinting tests were performed with hASCs embedded in the developed formulations. The results demonstrated that the designed inks are a versatile toolkit for 3D bioprinting and further show the benefits of using fish-derived gelatin for biofabrication.
AUTHOR Nulty, Jessica and Freeman, Fiona E. and Browe, David C. and Burdis, Ross and Ahern, Daniel P. and Pitacco, Pierluca and Lee, Yu Bin and Alsberg, Eben and Kelly, Daniel J.
Title 3D Bioprinting of prevascularised implants for the repair of critically-sized bone defects [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
For 3D bioprinted tissues to be scaled-up to clinically relevant sizes, effective prevascularisation strategies are required to provide the necessary nutrients for normal metabolism and to remove associated waste by-products. The aim of this study was to develop a bioprinting strategy to engineer prevascularised tissues in vitro and to investigate the capacity of such constructs to enhance the vascularisation and regeneration of large bone defects in vivo. From a screen of different bioinks, a fibrin-based hydrogel was found to best support human umbilical vein endothelial cell (HUVEC) sprouting and the establishment of a microvessel network. When this bioink was combined with HUVECs and supporting human bone marrow stem/stromal cells (hBMSCs), these microvessel networks persisted in vitro. Furthermore, only bioprinted tissues containing both HUVECs and hBMSCs, that were first allowed to mature in vitro, supported robust blood vessel development in vivo. To assess the therapeutic utility of this bioprinting strategy, these bioinks were used to prevascularise 3D printed polycaprolactone (PCL) scaffolds, which were subsequently implanted into critically-sized femoral bone defects in rats. Microcomputed tomography (µCT) angiography revealed increased levels of vascularisation in vivo, which correlated with higher levels of new bone formation. Such prevascularised constructs could be used to enhance the vascularisation of a range of large tissue defects, forming the basis of multiple new bioprinted therapeutics. Statement of Significance This paper demonstrates a versatile 3D bioprinting technique to improve the vascularisation of tissue engineered constructs and further demonstrates how this method can be incorporated into a bone tissue engineering strategy to improve vascularisation in a rat femoral defect model.
AUTHOR Das,Sanskrita and Nam,Hyoryung and Jang,Jinah
Title 3D bioprinting of stem cell-laden cardiac patch: A promising alternative for myocardial repair
Year 2021
Journal/Proceedings APL Bioengineering
Reftype
DOI/URL DOI
AUTHOR Leu Alexa, Rebeca and Ianchis, Raluca and Savu, Diana and Temelie, Mihaela and Trica, Bogdan and Serafim, Andrada and Vlasceanu, George Mihail and Alexandrescu, Elvira and Preda, Silviu and Iovu, Horia
Title 3D Printing of Alginate-Natural Clay Hydrogel-Based Nanocomposites [Abstract]
Year 2021
Journal/Proceedings Gels
Reftype
DOI/URL URL DOI
Abstract
Biocompatibility, biodegradability, shear tinning behavior, quick gelation and an easy crosslinking process makes alginate one of the most studied polysaccharides in the field of regenerative medicine. The main purpose of this study was to obtain tissue-like materials suitable for use in bone regeneration. In this respect, alginate and several types of clay were investigated as components of 3D-printing, nanocomposite inks. Using the extrusion-based nozzle, the nanocomposites inks were printed to obtain 3D multilayered scaffolds. To observe the behavior induced by each type of clay on alginate-based inks, rheology studies were performed on composite inks. The structure of the nanocomposites samples was examined using Fourier Transform Infrared Spectrometry and X-ray Diffraction (XRD), while the morphology of the 3D-printed scaffolds was evaluated using Electron Microscopy (SEM, TEM) and Micro-Computed Tomography (Micro-CT). The swelling and dissolvability of each composite scaffold in phosfate buffer solution were followed as function of time. Biological studies indicated that the cells grew in the presence of the alginate sample containing unmodified clay, and were able to proliferate and generate calcium deposits in MG-63 cells in the absence of specific signaling molecules. This study provides novel information on potential manufacturing methods for obtaining nanocomposite hydrogels suitable for 3D printing processes, as well as valuable information on the clay type selection for enabling accurate 3D-printed constructs. Moreover, this study constitutes the first comprehensive report related to the screening of several natural clays for the additive manufacturing of 3D constructs designed for bone reconstruction therapy.
AUTHOR Francesca Cestari and Mauro Petretta and Yuejiao Yang and Antonella Motta and Brunella Grigolo and Vincenzo M. Sglavo
Title 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering [Abstract]
Year 2021
Journal/Proceedings Sustainable Materials and Technologies
Reftype
DOI/URL URL DOI
Abstract
Bioactive composites made of ∽85 wt% poly(ε-caprolactone) (PCL) and ∽15 wt% nanometric hydroxyapatite (HA) produced from biogenic sources were 3D printed by an extrusion-based process to obtain porous scaffolds suitable for bone regeneration. Three different composite formulations were considered by using HA synthesized from three distinct natural sources, which were collected as food wastes: cuttlefish bones, mussel shells and chicken eggshells. Composition and thermal properties of the materials were analysed by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and x-ray spectroscopy (XRD), while the morphological and mechanical properties of the 3D scaffolds were studied by means of electron microscopy (SEM) and compression tests. Bioactivity was tested by seeding human osteoblast cell line (MG63) onto the scaffolds which were analysed by confocal microscopy and Alamar Blue and PicoGreen® tests after 1 to 7 culture days. The elastic modulus (177–316 MPa) is found to be within the range reported for typical trabecular bones being increased by the presence of the bio-HA particles. Moreover, cells adhesion, viability and proliferation are largely promoted in the scaffolds containing nanometric HA with respect to pure PCL, the best results being revealed when mussel shell-derived HA is used. Indeed, different biological sources result in different cell proliferation rates, pointing that the biological origin has an impact on the cells-scaffold interaction. In general, the results show that PCL/bio-HA scaffolds possess improved mechanical properties and enhanced bioactivity when compared with pure PCL ones.
AUTHOR Vyas, Cian and Zhang, Jun and Øvrebø, Øystein and Huang, Boyang and Roberts, Iwan and Setty, Mohan and Allardyce, Benjamin and Haugen, Håvard and Rajkhowa, Rangam and Bartolo, Paulo
Title 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Polycaprolactone (PCL) scaffolds have been widely investigated for tissue engineering applications, however, they exhibit poor cell adhesion and mechanical properties. Subsequently, PCL composites have been produced to improve the material properties. This study utilises a natural material, Bombyx mori silk microparticles (SMP) prepared by milling silk fibre, to produce a composite to enhance the scaffolds properties. Silk is biocompatible and biodegradable with excellent mechanical properties. However, there are no studies using SMPs as a reinforcing agent in a 3D printed thermoplastic polymer scaffold. PCL/SMP (10, 20, 30 wt%) composites were prepared by melt blending. Rheological analysis showed that SMP loading increased the shear thinning and storage modulus of the material. Scaffolds were fabricated using a screw-assisted extrusion-based additive manufacturing system. Scanning electron microscopy and X-ray microtomography was used to determine scaffold morphology. The scaffolds had high interconnectivity with regular printed fibres and pore morphologies within the designed parameters. Compressive mechanical testing showed that the addition of SMP significantly improved the compressive Young's modulus of the scaffolds. The scaffolds were more hydrophobic with the inclusion of SMP which was linked to a decrease in total protein adsorption. Cell behaviour was assessed using human adipose derived mesenchymal stem cells. A cytotoxic effect was observed at higher particle loading (30 wt%) after 7 days of culture. By day 21, 10 wt% loading showed significantly higher cell metabolic activity and proliferation, high cell viability, and cell migration throughout the scaffold. Calcium mineral deposition was observed on the scaffolds during cell culture. Large calcium mineral deposits were observed at 30 wt% and smaller calcium deposits were observed at 10 wt%. This study demonstrates that SMPs incorporated into a PCL scaffold provided effective mechanical reinforcement, improved the rate of degradation, and increased cell proliferation, demonstrating potential suitability for bone tissue engineering applications.
AUTHOR Golafshan, Nasim and Willemsen, Koen and Kadumudi, Firoz Babu and Vorndran, Elke and Dolatshahi-Pirouz, Alireza and Weinans, Harrie and van der Wal, Bart C. H. and Malda, Jos and Castilho, Miguel
Title 3D-Printed Regenerative Magnesium Phosphate Implant Ensures Stability and Restoration of Hip Dysplasia [Abstract]
Year 2021
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract Osteoarthritis of the hip is a painful and debilitating condition commonly occurring in humans and dogs. One of the main causes that leads to hip osteoarthritis is hip dysplasia. Although the current surgical methods to correct dysplasia work satisfactorily in many circumstances, these are associated with serious complications, tissue resorption, and degeneration. In this study, a one-step fabrication of a regenerative hip implant with a patient-specific design and load-bearing properties is reported. The regenerative hip implant is fabricated based on patient imaging files and by an extrusion assisted 3D printing process using a flexible, bone-inducing biomaterial. The novel implant can be fixed with metallic screws to host bone and can be loaded up to physiological loads without signs of critical permanent deformation or failure. Moreover, after exposing the hip implant to accelerated in vitro degradation, it is confirmed that it is still able to support physiological loads even after losing ≈40% of its initial mass. In addition, the osteopromotive properties of the novel hip implant is demonstrated as shown by an increased expression of osteonectin and osteocalcin by cultured human mesenchymal stem cells after 21 days. Overall, the proposed hip implant provides an innovative regenerative and mechanically stable solution for hip dysplasia treatment.
AUTHOR Chelsea Twohig and Mari Helsinga and Amin Mansoorifar and Avathamsa Athirasala and Anthony Tahayeri and Cristiane Miranda França and Silvia Amaya Pajares and Reyan Abdelmoniem and Susanne Scherrer and Stéphane Durual and Jack Ferracane and Luiz E. Bertassoni
Title A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
A functional vascular supply is a key component of any large-scale tissue, providing support for the metabolic needs of tissue-remodeling cells. Although well-studied strategies exist to fabricate biomimetic scaffolds for bone regeneration, success rates for regeneration in larger defects can be improved by engineering microvascular capillaries within the scaffolds to enhance oxygen and nutrient supply to the core of the engineered tissue as it grows. Even though the role of calcium and phosphate has been well understood to enhance osteogenesis, it remains unclear whether calcium and phosphate may have a detrimental effect on the vasculogenic and angiogenic potential of endothelial cells cultured on 3D printed bone scaffolds. In this study, we presented a novel dual-ink bioprinting method to create vasculature interwoven inside CaP bone constructs. In this method, strands of a CaP ink and a sacrificial template material was used to form scaffolds containing CaP fibers and microchannels seeded with vascular endothelial and mesenchymal stem cells (MSCs) within a photo-crosslinkable gelatin methacryloyl (GelMA) hydrogel material. Our results show similar morphology of growing vessels in the presence of CaP bioink, and no significant difference in endothelial cell sprouting was found. Furthermore, our initial results showed the differentiation of hMSCs into pericytes in the presence of CaP ink. These results indicate the feasibility of creating vascularized bone scaffolds, which can be used for enhancing vascular formation in the core of bone scaffolds.
AUTHOR Bin Wang and Pedro J. Díaz-Payno and David C. Browe and Fiona E. Freeman and Jessica Nulty and Ross Burdis and Daniel J. Kelly
Title Affinity-bound growth factor within sulfated interpenetrate network bioinks for bioprinting cartilaginous tissues [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
3D bioprinting has emerged as a promising technology in the field of tissue engineering and regenerative medicine due to its ability to create anatomically complex tissue substitutes. However, it still remains challenging to develop bioactive bioinks that provide appropriate and permissive environments to instruct and guide the regenerative process in vitro and in vivo. In this study alginate sulfate, a sulfated glycosaminoglycan (sGAG) mimic, was used to functionalize an alginate-gelatin methacryloyl (GelMA) interpenetrating network (IPN) bioink to enable the bioprinting of cartilaginous tissues. The inclusion of alginate sulfate had a limited influence on the viscosity, shear-thinning and thixotropic properties of the IPN bioink, enabling high-fidelity bioprinting and supporting mesenchymal stem cell (MSC) viability post-printing. The stiffness of printed IPN constructs greatly exceeded that achieved by printing alginate or GelMA alone, while maintaining resilience and toughness. Furthermore, given the high affinity of alginate sulfate to heparin-binding growth factors, the sulfated IPN bioink supported the sustained release of transforming growth factor-β3 (TGF-β3), providing an environment that supported robust chondrogenesis in vitro, with little evidence of hypertrophy or mineralization over extended culture periods. Such bioprinted constructs also supported chondrogenesis in vivo, with the controlled release of TGF-β3 promoting significantly higher levels of cartilage-specific extracellular matrix deposition. Altogether, these results demonstrate the potential of bioprinting sulfated bioinks as part of a ‘single-stage’ or ‘point-of-care’ strategy for regenerating cartilaginous tissues. Statement of Significance: This study highlights the potential of using sulfated interpenetrating network (IPN) bioink to support the regeneration of phenotypically stable articular cartilage. Construction of interpenetrate networks in the bioink enables unique high-fidelity bioprinting and unique synergistic mechanical properties. The presence of alginate sulfate provided the capacity of high affinity-binding of TGF-β3, which promoted robust chondrogenesis.
AUTHOR Rachel Cadle and Dan Rogozea and Leni Moldovan and Patricia Parsons-Wingerter and Nicanor I. Moldovan
Title An image analysis-based workflow for 3D bioprinting of anatomically realistic retinal vascular patterns [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
There is an enduring need for vascularization of bioprinted constructs with vascular networks optimized for distribution of nutrient-containing fluids, both for in vitro applications and in vivo implantation. However, most of the efforts in this field were directed so far towards generation of simple linear channels, often lined with endothelial cells only, and thus lacking the anatomical details of real vascular networks. To start addressing this need, here we explored the possibility of using actual vascular patterns derived from human ocular fundus for instructing the 3D printing activity. In order to assign to these patterns the organ-specific topology, and eventually vessel branch-defined cellular composition, we describe the use of the branching analysis program VESGEN 2D for planning a workflow that links the primary vascular images with their 3D printing with bioinks. To this end, we show how to process flat vascular images and, for an even more realistic representation, how to retro-engineer concave retinal patterns from flat images and to print them in a supporting hydrogel. This work opens the possibility of bioprinting more anatomically realistic vascular networks, and thus to eventually improve the vascularization of living tissue-engineered constructs.
AUTHOR Yuanhao Wu and Gabriele Maria Fortunato and Babatunde O Okesola and Francesco Luigi Pellerej di Brocchetti and Ratima Suntornnond and John Connelly and Carmelo De Maria and Jose Carlos Rodriguez-Cabello and Giovanni Vozzi and Wen Wang and Alvaro Mata
Title An interfacial self-assembling bioink for the manufacturing of capillary-like structures with tuneable and anisotropic permeability [Abstract]
Year 2021
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Self-assembling bioinks offer the possibility to biofabricate with molecular precision, hierarchical control, and biofunctionality. For this to become a reality with widespread impact, it is essential to engineer these ink systems ensuring reproducibility and providing suitable standardization. We have reported a self-assembling bioink based on disorder-to-order transitions of an elastin-like recombinamer (ELR) to co-assemble with graphene oxide (GO). Here, we establish reproducible processes, optimize printing parameters for its use as a bioink, describe new advantages that the self-assembling bioink can provide, and demonstrate how to fabricate novel structures with physiological relevance. We fabricate capillary-like structures with resolutions down to ∼10 µm in diameter and ∼2 µm thick tube walls and use both experimental and finite element analysis to characterize the printing conditions, underlying interfacial diffusion-reaction mechanism of assembly, printing fidelity, and material porosity and permeability. We demonstrate the capacity to modulate the pore size and tune the permeability of the resulting structures with and without human umbilical vascular endothelial cells. Finally, the potential of the ELR-GO bioink to enable supramolecular fabrication of biomimetic structures was demonstrated by printing tubes exhibiting walls with progressively different structure and permeability.
AUTHOR Otto, I. A. and Capendale, P. E. and Garcia, J. P. and de Ruijter, M. and van Doremalen, R. F. M. and Castilho, M. and Lawson, T. and Grinstaff, M. W. and Breugem, C. C. and Kon, M. and Levato, R. and Malda, J.
Title Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities [Abstract]
Year 2021
Journal/Proceedings Materials Today Bio
Reftype
DOI/URL URL DOI
Abstract
Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine–based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell–laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction.
AUTHOR Nulty, Jessica and Burdis, Ross and Kelly, Daniel J.
Title Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Frontiers in Bioengineering and Biotechnology
Reftype
DOI/URL DOI
Abstract
Bone tissue engineering (TE) has the potential to transform the treatment of challenging musculoskeletal pathologies. To date, clinical translation of many traditional TE strategies has been impaired by poor vascularisation of the implant. Addressing such challenges has motivated research into developmentally inspired TE strategies, whereby implants mimicking earlier stages of a tissue’s development are engineered in vitro and then implanted in vivo to fully mature into the adult tissue. The goal of this study was to engineer in vitro tissues mimicking the immediate developmental precursor to long bones, specifically a vascularised hypertrophic cartilage template, and to then assess the capacity of such a construct to support endochondral bone formation in vivo. To this end, we first developed a method for the generation of large numbers of hypertrophic cartilage microtissues using a microwell system, and encapsulated these microtissues into a fibrin-based hydrogel capable of supporting vasculogenesis by human umbilical vein endothelial cells (HUVECs). The microwells supported the formation of bone marrow derived stem/stromal cell (BMSC) aggregates and their differentiation toward a hypertrophic cartilage phenotype over 5 weeks of cultivation, as evident by the development of a matrix rich in sulphated glycosaminoglycan (sGAG), collagen types I, II, and X, and calcium. Prevascularisation of these microtissues, undertaken in vitro 1 week prior to implantation, enhanced their capacity to mineralise, with significantly higher levels of mineralised tissue observed within such implants after 4 weeks in vivo within an ectopic murine model for bone formation. It is also possible to integrate such microtissues into 3D bioprinting systems, thereby enabling the bioprinting of scaled-up, patient-specific prevascularised implants. Taken together, these results demonstrate the development of an effective strategy for prevascularising a tissue engineered construct comprised of multiple individual microtissue “building blocks,” which could potentially be used in the treatment of challenging bone defects.
AUTHOR Falcones, Bryan and Sanz-Fraile, Héctor and Marhuenda, Esther and Mendizábal, Irene and Cabrera-Aguilera, Ignacio and Malandain, Nanthilde and Uriarte, Juan J. and Almendros, Isaac and Navajas, Daniel and Weiss, Daniel J. and Farré, Ramon and Otero, Jorge
Title Bioprintable Lung Extracellular Matrix Hydrogel Scaffolds for 3D Culture of Mesenchymal Stromal Cells [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.
AUTHOR Fisch, Philipp and Broguiere, Nicolas and Finkielsztein, Sergio and Linder, Thomas and Zenobi-Wong, Marcy
Title Bioprinting of Cartilaginous Auricular Constructs Utilizing an Enzymatically Crosslinkable Bioink [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting of functional tissues could overcome tissue shortages and allow a more rapid response for treatments. However, despite recent progress in bioprinting, and its outstanding ability to position cells and biomaterials in a precise 3D manner, its success has been limited, due to insufficient maturation of constructs into functional tissue. Here, a novel calcium-triggered enzymatic crosslinking (CTEC) mechanism for bioinks based on the activation cascade of Factor XIII is presented and utilized for the biofabrication of cartilaginous constructs. Hyaluronan transglutaminase (HA-TG), an enzymatically crosslinkable material, has shown excellent characteristics for chondrogenesis and builds the basis of the CTEC bioink. The bioink supports tissue maturation with neocartilage formation and stiffening of constructs up to 400 kPa. Bioprinted constructs remain stable in vivo for 24 weeks and bioprinted auricular constructs transform into cartilaginous grafts. A major limitation of the current study is the deposition of collagen I, indicating the maturation toward fibrocartilage rather than elastic cartilage. Shifting the maturation process toward elastic cartilage will therefore be essential in order for the developed bioinks to offer a novel tissue engineered treatment for microtia patients. CTEC bioprinting furthermore opens up use of enzymatically crosslinkable biopolymers and their modularity to support a multitude of tissues.
AUTHOR Fenelon, Mathilde and Etchebarne, Marion and Siadous, Robin and Grémare, Agathe and Durand, Marlène and Sentilhes, Loic and Catros, Sylvain and Gindraux, Florelle and L'Heureux, Nicolas and Fricain, Jean-Christophe
Title Comparison of amniotic membrane versus the induced membrane for bone regeneration in long bone segmental defects using calcium phosphate cement loaded with BMP-2 [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Thanks to its biological properties, the human amniotic membrane (HAM) combined with a bone substitute could be a single-step surgical alternative to the two-step Masquelet induced membrane (IM) technique for regeneration of critical bone defects. However, no study has directly compared these two membranes. We first designed a 3D-printed scaffold using calcium phosphate cement (CPC). We assessed its suitability in vitro to support human bone marrow mesenchymal stromal cells (hBMSCs) attachment and osteodifferentiation. We then performed a rat femoral critical size defect to compare the two-step IM technique with a single-step approach using the HAM. Five conditions were compared. Group 1 was left empty. Group 2 received the CPC scaffold loaded with rh-BMP2 (CPC/BMP2). Group 3 and 4 received the CPC/BMP2 scaffold covered with lyophilized or decellularized/lyophilized HAM. Group 5 underwent a two- step induced membrane procedure with insertion of a polymethylmethacrylate (PMMA) spacer followed by, after 4 weeks, its replacement with the CPC/BMP2 scaffold wrapped in the IM. Micro-CT and histomorphometric analysis were performed after six weeks. Results showed that the CPC scaffold supported the proliferation and osteodifferentiation of hBMSCs in vitro. In vivo, the CPC/BMP2 scaffold very efficiently induced bone formation and led to satisfactory healing of the femoral defect, in a single-step, without autograft or the need for any membrane covering. In this study, there was no difference between the two-step induced membrane procedure and a single step approach. However, the results indicated that none of the tested membranes further enhanced bone healing compared to the CPC/BMP2 group.
AUTHOR Petretta, Mauro and Gambardella, Alessandro and Boi, Marco and Berni, Matteo and Cavallo, Carola and Marchiori, Gregorio and Maltarello, Maria Cristina and Bellucci, Devis and Fini, Milena and Baldini, Nicola and Grigolo, Brunella and Cannillo, Valeria
Title Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses [Abstract]
Year 2021
Journal/Proceedings Biology
Reftype
DOI/URL DOI
Abstract
Polycaprolactone (PCL) is widely used in additive manufacturing for the construction of scaffolds for tissue engineering because of its good bioresorbability, biocompatibility, and processability. Nevertheless, its use is limited by its inadequate mechanical support, slow degradation rate and the lack of bioactivity and ability to induce cell adhesion and, thus, bone tissue regeneration. In this study, we fabricated 3D PCL scaffolds reinforced with a novel Mg-doped bioactive glass (Mg-BG) characterized by good mechanical properties and biological reactivity. An optimization of the printing parameters and scaffold fabrication was performed; furthermore, an extensive microtopography characterization by scanning electron microscopy and atomic force microscopy was carried out. Nano-indentation tests accounted for the mechanical properties of the scaffolds, whereas SBF tests and cytotoxicity tests using human bone-marrow-derived mesenchymal stem cells (BM-MSCs) were performed to evaluate the bioactivity and in vitro viability. Our results showed that a 50/50 wt% of the polymer-to-glass ratio provides scaffolds with a dense and homogeneous distribution of Mg-BG particles at the surface and roughness twice that of pure PCL scaffolds. Compared to pure PCL (hardness H = 35 ± 2 MPa and Young’s elastic modulus E = 0.80 ± 0.05 GPa), the 50/50 wt% formulation showed H = 52 ± 11 MPa and E = 2.0 ± 0.2 GPa, hence, it was close to those of trabecular bone. The high level of biocompatibility, bioactivity, and cell adhesion encourages the use of the composite PCL/Mg-BG scaffolds in promoting cell viability and supporting mechanical loading in the host trabecular bone.
AUTHOR Bello, Thomas and Paindelli, Claudia and Diaz-Gomez, Luis A. and Melchiorri, Anthony and Mikos, Antonios G. and Nelson, Peter S. and Dondossola, Eleonora and Gujral, Taranjit S.
Title Computational modeling identifies multitargeted kinase inhibitors as effective therapies for metastatic, castration-resistant prostate cancer [Abstract]
Year 2021
Journal/Proceedings Proceedings of the National Academy of Sciences
Reftype
DOI/URL URL DOI
Abstract
Metastatic, castration-resistant prostate cancer (mCRPC) is an advanced prostate cancer with limited therapeutic options and poor patient outcomes. To investigate whether multitargeted kinase inhibitors (KIs) represent an opportunity for mCRPC drug development, we applied machine learning{textendash}based functional screening and identified two KIs, PP121 and SC-1, which demonstrated strong suppression of CRPC growth in vitro and in vivo. Furthermore, we show the marked ability of these KIs to improve on standard-of-care chemotherapy in both tumor response and survival, suggesting that combining multitargeted KIs with chemotherapy represents a promising avenue for mCRPC treatment. Overall, our findings demonstrate the application of a multidisciplinary strategy that blends bench science with machine-learning approaches for rapidly identifying KIs that result in desired phenotypic effects.Castration-resistant prostate cancer (CRPC) is an advanced subtype of prostate cancer with limited therapeutic options. Here, we applied a systems-based modeling approach called kinome regularization (KiR) to identify multitargeted kinase inhibitors (KIs) that abrogate CRPC growth. Two predicted KIs, PP121 and SC-1, suppressed CRPC growth in two-dimensional in vitro experiments and in vivo subcutaneous xenografts. An ex vivo bone mimetic environment and in vivo tibia xenografts revealed resistance to these KIs in bone. Combining PP121 or SC-1 with docetaxel, standard-of-care chemotherapy for late-stage CRPC, significantly reduced tibia tumor growth in vivo, decreased growth factor signaling, and vastly extended overall survival, compared to either docetaxel monotherapy. These results highlight the utility of computational modeling in forming physiologically relevant predictions and provide evidence for the role of multitargeted KIs as chemosensitizers for late-stage, metastatic CRPC.All study data are included in the article and/or supporting information.
AUTHOR Zhang, Xiao and Liu, Yang and Luo, Chunyang and Zhai, Chenjun and Li, Zuxi and Zhang, Yi and Yuan, Tao and Dong, Shilei and Zhang, Jiyong and Fan, Weimin
Title Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
As cartilage tissue lacks the innate ability to mount an adequate regeneration response, damage to it is detrimental to the quality of life of the subject. The emergence of three-dimensional bioprinting (3DBP) technology presents an opportunity to repair articular cartilage defects. However, widespread adoption of this technique has been impeded by difficulty in preparing a suitable bioink and the toxicity inherent in the chemical crosslinking process of most bioinks. Our objective was to develop a crosslinker-free bioink with the same biological activity as the original cartilage extracellular matrix (ECM) and good mechanical strength. We prepared bioinks containing different concentrations of silk fibroin and decellularized extracellular matrix (SF-dECM bioinks) mixed with bone marrow mesenchymal stem cells (BMSCs) for 3D bioprinting. SF and dECM interconnect with each other through physical crosslinking and entanglement. A porous structure was formed by removing the polyethylene glycol from the SF-dECM bioink. The results showed the SF-dECM construct had a suitable mechanical strength and degradation rate, and the expression of chondrogenesis-specific genes was found to be higher than that of the SF control construct group. Finally, we confirmed that a SF-dECM construct that was designed to release TGF-β3 had the ability to promote chondrogenic differentiation of BMSCs and provided a good cartilage repair environment, suggesting it is an ideal scaffold for cartilage tissue engineering.
AUTHOR Puertas-Bartolomé, María and Włodarczyk-Biegun, Małgorzata K. and del Campo, Aránzazu and Vázquez-Lasa, Blanca and San Román, Julio
Title Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing. Thus, NPs wound healing promoting activities, potential for drug encapsulation and controlled release, and further incorporation in a hydrogel bioink formulation to fabricate cell-laden 3D scaffolds are studied. NPs with 2 and 29 M % catechol contents (named NP2 and NP29) were obtained by nanoprecipitation and presented hydrodynamic diameters of 100 and 75 nm respectively. These nanocarriers encapsulated the hydrophobic compound coumarin-6 with 70% encapsulation efficiency values. In cell culture studies, the NPs had a protective effect in RAW 264.7 macrophages against oxidative stress damage induced by radical oxygen species (ROS). They also presented a regulatory effect on the inflammatory response of stimulated macrophages and promoted upregulation of the vascular endothelial growth factor (VEGF) in fibroblasts and endothelial cells. In particular, NP29 were used in a hydrogel bioink formulation using carboxymethyl chitosan and hyaluronic acid as polymeric matrices. Using a reactive mixing bioprinting approach, NP-loaded hydrogel scaffolds with good structural integrity, shape fidelity and homogeneous NPs dispersion, were obtained. The in vitro catechol NPs release profile of the printed scaffolds revealed a sustained delivery. The bioprinted scaffolds supported viability and proliferation of encapsulated L929 fibroblasts over 14 days. We envision that the catechol functionalized NPs and resulting bioactive bioink presented in this work offer promising advantages for wound healing applications, as they: 1) support controlled release of bioactive catechol NPs to the wound site; 2) can incorporate additional therapeutic functions by co-encapsulating drugs; 3) can be printed into 3D scaffolds with tailored geometries based on patient requirements.
AUTHOR Kamdem Tamo, Arnaud and Doench, Ingo and Walter, Lukas and Montembault, Alexandra and Sudre, Guillaume and David, Laurent and Morales-Helguera, Aliuska and Selig, Mischa and Rolauffs, Bernd and Bernstein, Anke and Hoenders, Daniel and Walther, Andreas and Osorio-Madrazo, Anayancy
Title Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues [Abstract]
Year 2021
Journal/Proceedings Polymers
Reftype
DOI/URL DOI
Abstract
Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable from hard tissues by their low mineral and high water content. In this work, we proposed the development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose nanofibers (CNFs), both without any chemical modification, which processing did not incorporate any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new strategies for the design of environmentally friendly high mechanical performance composites. In the here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing (EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low concentrations of chitosan (2.0–3.0% (w/v)) and cellulose nanofibers (0.2–0.4% (w/v)). CHI/CNF printed hydrogels with good mechanical performance (Young’s modulus 3.0 MPa, stress at break 1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D printability, resolution, and quality of the constructs (microstructure and mechanical properties), resulting in good cell viability. This work allows expanding the library of the so far used biopolymer compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.
AUTHOR Chen, Shengyang and Shi, Qian and Jang, Taesik and Ibrahim, Mohammed Shahrudin Bin and Deng, Jingyu and Ferracci, Gaia and Tan, Wen See and Cho, Nam-Joon and Song, Juha
Title Engineering Natural Pollen Grains as Multifunctional 3D Printing Materials [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract The development of multifunctional 3D printing materials from sustainable natural resources is a high priority in additive manufacturing. Using an eco-friendly method to transform hard pollen grains into stimulus-responsive microgel particles, we engineered a pollen-derived microgel suspension that can serve as a functional reinforcement for composite hydrogel inks and as a supporting matrix for versatile freeform 3D printing systems. The pollen microgel particles enabled the printing of composite inks and improved the mechanical and physiological stabilities of alginate and hyaluronic acid hydrogel scaffolds for 3D cell culture applications. Moreover, the particles endowed the inks with stimulus-responsive controlled release properties. The suitability of the pollen microgel suspension as a supporting matrix for freeform 3D printing of alginate and silicone rubber inks was demonstrated and optimized by tuning the rheological properties of the microgel. Compared with other classes of natural materials, pollen grains have several compelling features, including natural abundance, renewability, affordability, processing ease, monodispersity, and tunable rheological features, which make them attractive candidates to engineer advanced materials for 3D printing applications.
AUTHOR Oliveira, Hugo and Médina, Chantal and Stachowicz, Marie-Laure and Paiva dos Santos, Bruno and Chagot, Lise and Dusserre, Nathalie and Fricain, Jean-Christophe
Title Extracellular matrix (ECM)-derived bioinks designed to foster vasculogenesis and neurite outgrowth: Characterization and bioprinting [Abstract]
Year 2021
Journal/Proceedings Bioprinting
Reftype
DOI/URL URL DOI
Abstract
The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration approaches. In this scope, the lack of suitable biomaterials that can be efficiently formulated as printable bioinks, while supporting specific cellular events, is currently considered as one of the main limitations in the field. Indeed, extracellular matrix (ECM)-derived biomaterials formulated to enable printability and support cellular response, for instance via integrin binding, are eagerly awaited in the field of bioprinting. Several bioactive laminin sequences, including peptides such as YIGSR and IKVAV, have been identified to promote endothelial cell attachment and/or neurite outgrowth and guidance, respectively. Here, we show the development of two distinct bioinks, designed to foster vasculogenesis or neurogenesis, based on methacrylated collagen and hyaluronic acid (CollMA and HAMA, respectively), both relevant ECM-derived polymers, and on their combination with cysteine-flanked laminin-derived peptides. Using this strategy, it was possible to optimize the bioink printability, by tuning CollMA and HAMA concentration and ratio, and modulate their bioactivity, through adjustments in the cell-active peptide sequence spatial density, without compromising cell viability. We demonstrated that cell-specific bioinks could be customized for the bioprinting of both human umbilical vein cord endothelial cells (HUVECs) or adult rat sensory neurons from the dorsal root ganglia, and could stimulate both vasculogenesis and neurite outgrowth, respectively. This approach holds great potential as it can be tailored to other cellular models, due to its inherent capacity to accommodate different peptide compositions and to generate complex peptide mixtures and/or gradients.
AUTHOR Tan, Edgar Y. S. and Suntornnond, Ratima and Yeong, Wai Yee
Title High-Resolution Novel Indirect Bioprinting of Low-Viscosity Cell-Laden Hydrogels via Model-Support Bioink Interaction [Abstract]
Year 2021
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting of unmodified soft extracellular matrix into complex 3D structures has remained challenging to fabricate. Herein, we established a novel process for the printing of low-viscosity hydrogel by using a unique support technique to retain the structural integrity of the support structure. We demonstrated that this process of printing could be used for different types of hydrogel, ranging from fast crosslinking gelatin methacrylate to slow crosslinking collagen type I. In addition, we evaluated the biocompatibility of the process by observing the effects of the cytotoxicity of L929 and the functionality of the human umbilical vein endothelium primary cells after printing. The results show that the bioprinted construct provided excellent biocompatibility as well as supported cell growth and differentiation. Thus, this is a novel technique that can be potentially used to enhance the resolution of the extrusion-based bioprinter.
AUTHOR Lechner, Annika and Trossmann, Vanessa T. and Scheibel, Thomas
Title Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability [Abstract]
Year 2021
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract Printability of bioinks encompasses considerations concerning rheology and extrudability, characterization of filament formation, shape fidelity, cell viability and post-printing cellular development. Recombinant spider silk based hydrogels might be a suitable material to be used in bioinks, i.e. a formulation of cells and materials to be used for bioprinting. Here, the high shape fidelity of spider silk ink is shown by bioprinting the shape and size of a human aortic valve. Further the influence of the encapsulation of cells has been evaluated on spider silk hydrogel formation, hydrogel mechanics, and shape fidelity upon extrusion based bioprinting. It is shown that the presence of cells impacts gelation of spider silk proteins differently depending on the used silk variant. RGD-modified spider silk hydrogels are physically crosslinked by the cells, while there is no active interaction between cells and un-tagged spider silk proteins. Strikingly, even at cell densities up to ten million cells/ml, cell viability is high after extrusion based printing which is a significant prerequisite for future applications. Shape fidelity of the printed constructs is demonstrated using a filament collapse test in absence and presence of human cells. This article is protected by copyright. All rights reserved
AUTHOR e Silva, Edney P. and Huang, Boyang and Helaehil, Júlia V. and Nalesso, Paulo R. L. and Bagne, Leonardo and de Oliveira, Maraiara A. and Albiazetti, Gabriela C. C. and Aldalbahi, Ali and El-Newehy, Mohamed and Santamaria-Jr, Milton and Mendonça, Fernanda A. S. and Bártolo, Paulo and Caetano, Guilherme F.
Title In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering [Abstract]
Year 2021
Journal/Proceedings Bio-Design and Manufacturing
Reftype e Silva2021
DOI/URL DOI
Abstract
Critical bone defects are considered one of the major clinical challenges in reconstructive bone surgery. The combination of 3D printed conductive scaffolds and exogenous electrical stimulation (ES) is a potential favorable approach for bone tissue repair. In this study, 3D conductive scaffolds made with biocompatible and biodegradable polycaprolactone (PCL) and multi-walled carbon nanotubes (MWCNTs) were produced using the extrusion-based additive manufacturing to treat large calvary bone defects in rats. Histology results show that the use of PCL/MWCNTs scaffolds and ES contributes to thicker and increased bone tissue formation within the bone defect. Angiogenesis and mineralization are also significantly promoted using high concentration of MWCNTs (3 wt%) and ES. Moreover, scaffolds favor the tartrate-resistant acid phosphatase (TRAP) positive cell formation, while the addition of MWCNTs seems to inhibit the osteoclastogenesis but present limited effects on the osteoclast functionalities (receptor activator of nuclear factor κβ ligand (RANKL) and osteoprotegerin (OPG) expressions). The use of ES promotes the osteoclastogenesis and RANKL expressions, showing a dominant effect in the bone remodeling process. These results indicate that the combination of 3D printed conductive PCL/MWCNTs scaffold and ES is a promising strategy to treat critical bone defects and provide a cue to establish an optimal protocol to use conductive scaffolds and ES for bone tissue engineering.
AUTHOR Zamani, Yasaman and Amoabediny, Ghassem and Mohammadi, Javad and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke and Helder, Marco N.
Title Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration [Abstract]
Year 2021
Journal/Proceedings Iranian Biomedical Journal
Reftype
DOI/URL URL DOI
Abstract
Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using three-dimensional printing (3DP). Herein, we aimed to determine whether the much tighter control of microstructure of 3DP poly(lactic-co-glycolic) acid/β-tricalcium phosphate (PLGA/β-TCP) scaffolds is more effective in promoting osteogenesis than porous scaffolds produced by solvent casting/porogen leaching. Methods: Physical and mechanical properties of porous and 3DP scaffolds were studied. The response of pre-osteoblasts to the scaffolds was analyzed after 14 days. Results: The 3DP scaffolds had a smoother surface (Ra: 22 ± 3 µm) relative to the highly rough surface of porous scaffolds (Ra: 110 ± 15 µm). Water contact angle was 112 ± 4° on porous and 76 ± 6° on 3DP scaffolds. Porous and 3DP scaffolds had the pore size of 408 ± 90 and 315 ± 17 µm and porosity of 85 ± 5% and 39 ± 7%, respectively. Compressive strength of 3DP scaffolds (4.0 ± 0.3 MPa) was higher than porous scaffolds (1.7 ± 0.2 MPa). Collagenous matrix deposition was similar on both scaffolds. Cells proliferated from day 1 to day 14 by fourfold in porous and by 3.8-fold in 3DP scaffolds. Alkaline phosphatase (ALP) activity was 21-fold higher in 3DP scaffolds than porous scaffolds. Conclusion: The 3DP scaffolds show enhanced mechanical properties and ALP activity compared to porous scaffolds in vitro, suggesting that 3DP PLGA/β-TCP scaffolds are possibly more favorable for bone formation.
AUTHOR Daskalakis, Evangelos and Liu, Fengyuan and Huang, Boyang and Acar, Anil A. and Cooper, Glen and Weightman, Andrew and Blunn, Gordon and Koç, Bahattin and Bartolo, Paulo
Title Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects [Abstract]
Year 2021
Journal/Proceedings International Journal of Bioprinting; Vol 7, No 2 (2021)
Reftype
DOI/URL URL
Abstract
There is a significant unmet clinical need to prevent amputations due to large bone loss injuries. We are addressing this problem by developing a novel, cost-effective osseointegrated prosthetic solution based on the use of modular pieces, bone bricks, made with biocompatible and biodegradable materials that fit together in a Lego-like way to form the prosthesis. This paper investigates the anatomical designed bone bricks with different architectures, pore size gradients, and material compositions. Polymer and polymer-composite 3D printed bone bricks are extensively morphological, mechanical, and biological characterized. Composite bone bricks were produced by mixing polycaprolactone (PCL) with different levels of hydroxyapatite (HA) and β-tri-calcium phosphate (TCP). Results allowed to establish a correlation between bone bricks architecture and material composition and bone bricks performance. Reinforced bone bricks showed improved mechanical and biological results. Best mechanical properties were obtained with PCL/TCP bone bricks with 38 double zig-zag filaments and 14 spiral-like pattern filaments, while the best biological results were obtained with PCL/HA bone bricks based on 25 double zig-zag filaments and 14 spiral-like pattern filaments.
AUTHOR Wang, Weiguang and Chen, Jun-Xiang and Hou, Yanhao and Bartolo, Paulo and Chiang, Wei-Hung
Title Investigations of Graphene and Nitrogen-Doped Graphene Enhanced Polycaprolactone 3D Scaffolds for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI