SCIENTIFIC PUBLICATIONS

You are researching: Jiao Tong University
Matching entries: 2 /2
All Groups
AUTHOR Zhang, Yubei and Raza, Ali and Xue, Ya-Qi and Yang, Ganggang and Hayat, Uzma and Yu, Jingwen and Liu, Chang and Wang, Hua-Jie and Wang, Jin-Ye
Title Water-responsive 4D printing based on self-assembly of hydrophobic protein “Zein” for the control of degradation rate and drug release [Abstract]
Year 2023
Journal/Proceedings Bioactive Materials
Reftype
DOI/URL URL DOI
Abstract
Four-dimensional (4D) printing is a promising technology that provides solutions for compelling needs in various fields. Most of the reported 4D printed systems are based on the temporal shape transformation of printed subjects. Induction of temporal heterogenicity in functions in addition to shape may extend the scope of 4D printing. Herein, we report a 4D printing approach using plant protein (zein) gel inspired by the amyloid fibrils formation mechanism. The printing of zein gel in a specialized layered-Carbopol supporting bath with different water concentrations in an ethanol-water mixture modulates hydrophobic and hydrogen bonding that causes temporal changes in functions. The part of the construct printed in a supporting bath with higher water content exhibits higher drug loading, faster drug release and degradation than those printed in the supporting bath with lower water content. Tri-segment conduit and butterfly-shaped construct with two asymmetrical wings are printed using this system to evaluate biomedical function as nerve conduit and drug delivery system. 4D printed conduits are also effective as a drug-eluting urethral stent in the porcine model. Overall, this study extends the concept of 4D printing beyond shape transformation and presents an approach of fabricating specialized baths for 4D printing that can also be extended to other materials to obtain 4D printed medical devices with translational potential.
AUTHOR Xue, Ya-Qi and Zhang, Yu-Cheng and Zhang, Yu-Bei and Wang, Jin-Ye
Title Zein-based 3D tubular constructs with tunable porosity for 3D cell culture and drug delivery [Abstract]
Year 2023
Journal/Proceedings Biomedical Engineering Advances
Reftype
DOI/URL URL DOI
Abstract
Manufacturing tubular constructs with tunable porosity can mimic the vascular structure, not only for supplying nutrients and removing metabolites to support long-term 3D cell culture but also for delivering bioactive components and drugs to tissues. There are few reports on the second purpose through 3D printing. In this study, bio-inspired tubular constructs with permeability were achieved using zein-based ink, forming structures with tunable porosity via the 3D printing technique. The parameters, e.g., zein content, with/without the addition of porogen, and drying conditions, were optimized to control the porous structure and porosity of the printed tubes. The inner wall of the resultant tube supported the adhesion of endothelial cells. A perfusion system was designed, and the penetrability of zein-based tubular constructs was demonstrated by the dialysis test. Moreover, perfusion of cell culture media and the anti-cancer drug in cell-laden hydrogels with tubular structure resulted in 3-day of 3D cell culture with a higher survival rate, and the drug was delivered to local cells around the tubular constructs, respectively. This is a new report on the preparation of 3D-printed tubular constructs using zein as the biomaterial inks with tunable porosity and porous structure, providing a general system for 3D cell culture, 3D drugs screening/pharmacokinetics in vitro, and tissue engineering.