BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Silk Fibroin
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
All Groups
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Biomaterial Processing
- Tissue Models – Drug Discovery
- Industrial
- Drug Discovery
- In Vitro Models
- Robotics
- Electronics – Robotics – Industrial
- Medical Devices
- Tissue and Organ Biofabrication
- Drug Delivery
- Skin Tissue Engineering
- Vascularization
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Muscle Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
- Review Paper
- Printing Technology
- Biomaterial
- Thermoplastics
- Non-cellularized gels/pastes
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Jeffamine
- Polyethylene
- SEBS
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Ionic Liquids
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Magnetorheological fluid (MR fluid – MRF)
- Salecan
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Collagen
- Elastin
- Heparin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Silk Fibroin
- Pyrogallol
- Xanthan Gum
- Fibrinogen
- Fibrin
- Paeoniflorin
- Fibronectin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- Cellulose
- Novogel
- Hyaluronic Acid
- Peptide gel
- Methacrylated Silk Fibroin
- Polyethylene glycol (PEG) based
- α-Bioink
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Solid Dosage Drugs
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- Stem Cells
- Spheroids
- Meniscus Cells
- Synoviocytes
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Neurons
- Macrophages
- Human Trabecular Meshwork Cells
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Chondrocytes
- Embrionic Kidney (HEK)
- Corneal Stromal Cells
- Fibroblasts
- β cells
- Myoblasts
- Pericytes
- Hepatocytes
- Cancer Cell Lines
- Bacteria
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Osteoblasts
- Monocytes
- Mesothelial cells
- Epithelial
- Neutrophils
- Adipocytes
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Institution
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Innsbruck University
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Politecnico di Torino
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- University of Nottingham
- University of Geneva
- SINTEF
- Rice University
- Trinity College
- Novartis
- University of Central Florida
- Hefei University
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- University of Toronto
- Brown University
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Montreal University
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Harbin Institute of Technology
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- University of Sheffield
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- Tiangong University
AUTHOR
Title
3D-Printing Assisted SF-SA Based MgP Hybrid Hydrogel Scaffold for Bone Tissue Engineering
[Abstract]
Year
2022
Journal/Proceedings
Frontiers in Materials
Reftype
DOI/URL
DOI
Groups
AbstractA new prototype of hybrid silk fibroin and sodium alginate (SF-SA) based osteogenic hydrogel scaffold with a concentration of 2.5% magnesium phosphate (MgP) based gel was prepared with the assistance of an extrusion-based three-dimensional (3D) printing machine in this study. To determine the optimum ratio of MgP-based gel in the hydrogel, a series of physical and biochemical experiments were performed to determine the proper concentration of MgP in two-dimensional hydrogel films, as well as the cell compatibility with these materials in sequence. The SF-SA hydrogel with 2.5wt% magnesium phosphate (SF-SA/MgP) stood out and then was used to fabricate 3D hydrogel scaffolds according to the consequences of the experiments, with SF-SA hydrogel as a control. Then the morphology and osteogenic activity of the scaffolds were further characterized by field emission scanning electron microscope (SEM), calcium mineralization staining, and reverse transcription-polymerase chain reaction (rt-PCR). The SF-SA/MgP hydrogel scaffold promoted the adhesion of rat mesenchymal stem cells with higher degrees of efficiency under dynamic culture conditions. After co-culturing in an osteogenic differentiation medium, cells seeded on SF-SA/MgP hydrogel scaffold were shown to have better performance on osteogenesis in the early stage than the control group. This work illustrates that the 3D structures of hybrid SF-SA/MgP hydrogel are promising headstones for osteogenic tissue engineering.
AUTHOR
Title
Flow Simulation and Gradient Printing of Fluorapatite- and Cell-Loaded Recombinant Spider Silk Hydrogels
[Abstract]
Year
2022
Journal/Proceedings
Biomolecules
Reftype
Groups
AbstractHierarchical structures are abundant in almost all tissues of the human body. Therefore, it is highly important for tissue engineering approaches to mimic such structures if a gain of function of the new tissue is intended. Here, the hierarchical structures of the so-called enthesis, a gradient tissue located between tendon and bone, were in focus. Bridging the mechanical properties from soft to hard secures a perfect force transmission from the muscle to the skeleton upon locomotion. This study aimed at a novel method of bioprinting to generate gradient biomaterial constructs with a focus on the evaluation of the gradient printing process. First, a numerical approach was used to simulate gradient formation by computational flow as a prerequisite for experimental bioprinting of gradients. Then, hydrogels were printed in a single cartridge printing set-up to transfer the findings to biomedically relevant materials. First, composites of recombinant spider silk hydrogels with fluorapatite rods were used to generate mineralized gradients. Then, fibroblasts were encapsulated in the recombinant spider silk-fluorapatite hydrogels and gradually printed using unloaded spider silk hydrogels as the second component. Thereby, adjustable gradient features were achieved, and multimaterial constructs were generated. The process is suitable for the generation of gradient materials, e.g., for tissue engineering applications such as at the tendon/bone interface.
AUTHOR
Title
Recombinant Spider Silk Bioinks for Continuous Protein Release by Encapsulated Producer Cells
[Abstract]
Year
2022
Journal/Proceedings
Biomacromolecules
Reftype
DOI/URL
DOI
Groups
AbstractTargeted therapies using biopharmaceuticals are of growing clinical importance in disease treatment. Currently, there are several limitations of protein-based therapeutics (biologicals), including suboptimal biodistribution, lack of stability, and systemic side effects. A promising approach to overcoming these limitations could be a therapeutic cell-loaded 3D construct consisting of a suitable matrix component that harbors producer cells continuously secreting the biological of interest. Here, the recombinant spider silk proteins eADF4(C16), eADF4(C16)-RGD, and eADF4(C16)-RGE have been processed together with HEK293 producer cells stably secreting the highly traceable reporter biological TNFR2-Fc-GpL, a fusion protein consisting of the extracellular domain of TNFR2, the Fc domain of human IgG1, and the luciferase of Gaussia princeps as a reporter domain. eADF4(C16) and eADF4(C16)-RGD hydrogels provide structural and mechanical support, promote HEK293 cell growth, and allow fusion protein production by the latter. Bioink-captured HEK293 producer cells continuously release functional TNFR2-Fc-GpL over 14 days. Thus, the combination of biocompatible, printable spider silk bioinks with drug-producing cells is promising for generating implantable 3D constructs for continuous targeted therapy.
AUTHOR
Title
Silk Fibroin as a Bioink - A Thematic Review of Functionalization Strategies for Bioprinting Applications
[Abstract]
Year
2022
Journal/Proceedings
ACS Biomater. Sci. Eng.
Reftype
DOI/URL
DOI
AbstractBioprinting is an emerging tissue engineering technique that has attracted the attention of researchers around the world, for its ability to create tissue constructs that recapitulate physiological function. While the technique has been receiving hype, there are still limitations to the use of bioprinting in practical applications, much of which is due to inappropriate bioink design that is unable to recapitulate complex tissue architecture. Silk fibroin (SF) is an exciting and promising bioink candidate that has been increasingly popular in bioprinting applications because of its processability, biodegradability, and biocompatibility properties. However, due to its lack of optimum gelation properties, functionalization strategies need to be employed so that SF can be effectively used in bioprinting applications. These functionalization strategies are processing methods which allow SF to be compatible with specific bioprinting techniques. Previous literature reviews of SF as a bioink mainly focus on discussing different methods to functionalize SF as a bioink, while a comprehensive review on categorizing SF functional methods according to their potential applications is missing. This paper seeks to discuss and compartmentalize the different strategies used to functionalize SF for bioprinting and categorize the strategies for each bioprinting method (namely, inkjet, extrusion, and light-based bioprinting). By compartmentalizing the various strategies for each printing method, the paper illustrates how each strategy is better suited for a target tissue application. The paper will also discuss applications of SF bioinks in regenerating various tissue types and the challenges and future trends that SF can take in its role as a bioink material.
AUTHOR
Title
3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair
[Abstract]
Year
2021
Journal/Proceedings
International Journal of Bioprinting; Vol 7, No 4 (2021)
Reftype
Groups
AbstractRecently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.
AUTHOR
Title
3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications
[Abstract]
Year
2021
Journal/Proceedings
Materials Science and Engineering: C
Reftype
Groups
AbstractPolycaprolactone (PCL) scaffolds have been widely investigated for tissue engineering applications, however, they exhibit poor cell adhesion and mechanical properties. Subsequently, PCL composites have been produced to improve the material properties. This study utilises a natural material, Bombyx mori silk microparticles (SMP) prepared by milling silk fibre, to produce a composite to enhance the scaffolds properties. Silk is biocompatible and biodegradable with excellent mechanical properties. However, there are no studies using SMPs as a reinforcing agent in a 3D printed thermoplastic polymer scaffold. PCL/SMP (10, 20, 30 wt%) composites were prepared by melt blending. Rheological analysis showed that SMP loading increased the shear thinning and storage modulus of the material. Scaffolds were fabricated using a screw-assisted extrusion-based additive manufacturing system. Scanning electron microscopy and X-ray microtomography was used to determine scaffold morphology. The scaffolds had high interconnectivity with regular printed fibres and pore morphologies within the designed parameters. Compressive mechanical testing showed that the addition of SMP significantly improved the compressive Young's modulus of the scaffolds. The scaffolds were more hydrophobic with the inclusion of SMP which was linked to a decrease in total protein adsorption. Cell behaviour was assessed using human adipose derived mesenchymal stem cells. A cytotoxic effect was observed at higher particle loading (30 wt%) after 7 days of culture. By day 21, 10 wt% loading showed significantly higher cell metabolic activity and proliferation, high cell viability, and cell migration throughout the scaffold. Calcium mineral deposition was observed on the scaffolds during cell culture. Large calcium mineral deposits were observed at 30 wt% and smaller calcium deposits were observed at 10 wt%. This study demonstrates that SMPs incorporated into a PCL scaffold provided effective mechanical reinforcement, improved the rate of degradation, and increased cell proliferation, demonstrating potential suitability for bone tissue engineering applications.
AUTHOR
Title
Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering
[Abstract]
Year
2021
Journal/Proceedings
Materials Science and Engineering: C
Reftype
Groups
AbstractAs cartilage tissue lacks the innate ability to mount an adequate regeneration response, damage to it is detrimental to the quality of life of the subject. The emergence of three-dimensional bioprinting (3DBP) technology presents an opportunity to repair articular cartilage defects. However, widespread adoption of this technique has been impeded by difficulty in preparing a suitable bioink and the toxicity inherent in the chemical crosslinking process of most bioinks. Our objective was to develop a crosslinker-free bioink with the same biological activity as the original cartilage extracellular matrix (ECM) and good mechanical strength. We prepared bioinks containing different concentrations of silk fibroin and decellularized extracellular matrix (SF-dECM bioinks) mixed with bone marrow mesenchymal stem cells (BMSCs) for 3D bioprinting. SF and dECM interconnect with each other through physical crosslinking and entanglement. A porous structure was formed by removing the polyethylene glycol from the SF-dECM bioink. The results showed the SF-dECM construct had a suitable mechanical strength and degradation rate, and the expression of chondrogenesis-specific genes was found to be higher than that of the SF control construct group. Finally, we confirmed that a SF-dECM construct that was designed to release TGF-β3 had the ability to promote chondrogenic differentiation of BMSCs and provided a good cartilage repair environment, suggesting it is an ideal scaffold for cartilage tissue engineering.
AUTHOR
Title
Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability
[Abstract]
Year
2021
Journal/Proceedings
Macromolecular Bioscience
Reftype
DOI/URL
DOI
Groups
AbstractAbstract Printability of bioinks encompasses considerations concerning rheology and extrudability, characterization of filament formation, shape fidelity, cell viability and post-printing cellular development. Recombinant spider silk based hydrogels might be a suitable material to be used in bioinks, i.e. a formulation of cells and materials to be used for bioprinting. Here, the high shape fidelity of spider silk ink is shown by bioprinting the shape and size of a human aortic valve. Further the influence of the encapsulation of cells has been evaluated on spider silk hydrogel formation, hydrogel mechanics, and shape fidelity upon extrusion based bioprinting. It is shown that the presence of cells impacts gelation of spider silk proteins differently depending on the used silk variant. RGD-modified spider silk hydrogels are physically crosslinked by the cells, while there is no active interaction between cells and un-tagged spider silk proteins. Strikingly, even at cell densities up to ten million cells/ml, cell viability is high after extrusion based printing which is a significant prerequisite for future applications. Shape fidelity of the printed constructs is demonstrated using a filament collapse test in absence and presence of human cells. This article is protected by copyright. All rights reserved
AUTHOR
Title
Modeling and Fabrication of Silk Fibroin-Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting
[Abstract]
Year
2021
Journal/Proceedings
ACS Biomater. Sci. Eng.
Reftype
DOI/URL
DOI
Groups
AbstractRobotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure’s fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs’ fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications. Robotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure’s fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs’ fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications.
AUTHOR
Title
The effect of silk-gelatin bioink and TGF-β3 on mesenchymal stromal cells in 3D bioprinted chondrogenic constructs: A proteomic study
[Abstract]
Year
2021
Journal/Proceedings
Journal of Materials Research
Reftype
Chawla2021
DOI/URL
DOI
Groups
AbstractMajor limitation of 3D bioprinting is the poor understanding of the role of bioink in modulating molecular signaling pathways. Phenotypically stable engineered articular cartilage was fabricated using silk fibroin-gelatin (SF-G) bioink and progenitor cells or mature articular chondrocytes. In the current study, role of SF-G bioink in modulating in vitro chondrogenic signaling pathways in human bone marrow-derived stromal cells (hMSCs) is elucidated. The interaction between SF-G bioink and hMSCs augmented several chondrogenic pathways, including Wnt, HIF-1, and Notch. We explored the debatable role of TGF-β signaling, by assessing the differential protein expression by hMSCs-laden bioprinted constructs in the presence and absence of TGF-β3. hMSCs-laden bioprinted constructs contained a large percentage of collagen type II and Filamin-B, typical to the native articular cartilage. Hypertrophy markers were not identified following TGF-β3 addition. This is first detailed proteomics analysis to identify articular cartilage-specific pathways in SF-G-based 3D bioprinted construct.
AUTHOR
Title
Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration
[Abstract]
Year
2020
Journal/Proceedings
Tissue Engineering Part A
Reftype
DOI/URL
DOI
Groups
AbstractThe recent advent of 3D bioprinting of biopolymers provides a novel method for fabrication of tissue-engineered scaffolds and also offers a potentially promising avenue in cartilage regeneration. Silk fibroin (SF) is one of the most popular biopolymers used for 3D bioprinting, but further application of SF is hindered by its limited biological activities. Incorporation of growth factors (GFs) has been identified as a solution to improve biological function. Platelet-rich plasma (PRP) is an autologous resource of GFs, which has been widely used in clinic. In this study, we have developed SF-based bioinks incorporated with different concentrations of PRP (12.5%, 25%, and 50%; vol/vol). Release kinetic studies show that SF-PRP bioinks could achieve controlled release of GFs. Subsequently, SF-PRP bioinks were successfully fabricated into scaffolds by bioprinting. Our results revealed that SF-PRP scaffolds possessed proper internal pore structure, good biomechanical properties, and a suitable degradation rate for cartilage regeneration. Live/dead staining showed that 3D, printed SF-PRP scaffolds were biocompatible. Moreover, in vitro studies revealed that tissue-engineered cartilage from the SF-PRP group exhibited improved qualities compared with the pure SF controls, according to histological and immunohistochemical findings. Biochemical evaluations confirmed that SF-PRP (50% PRP, v/v) scaffolds allowed the largest increases in collagen and glycosaminoglycan concentrations, when compared with the pure SF group. These findings suggest that 3D, printed SF-PRP scaffolds could be potential candidates for cartilage tissue engineering.
AUTHOR
Title
Silk-reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture
[Abstract]
Year
2020
Journal/Proceedings
Tissue Engineering Part A
Reftype
DOI/URL
DOI
Groups
AbstractType I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx Mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems like phase separation and collagen denaturation appears during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In the present work, we present a new, simple and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure which results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and Atomic Force Microscopy respectively, showed a more than two-fold stiffening as compared with collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived mesenchymal stem cells cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen.
AUTHOR
Title
Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional Bioprinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells
Year
2019
Journal/Proceedings
ACS Biomaterials Science & Engineering
Reftype
DOI/URL
DOI
AUTHOR
Year
2018
Journal/Proceedings
ACS Biomaterials Science and Engineering
Reftype
DOI/URL
DOI
Groups
AbstractTherapeutic biologics (i.e., proteins) have been widely recognized for the treatment, prevention, and cure of a variety of human diseases and syndromes. However, design of novel protein-delivery systems to achieve a nontoxic, constant, and efficient delivery with minimal doses of therapeutic biologics is still challenging. Here, recombinant spider silk-based materials are employed as a delivery system for the administration of therapeutic biologicals. Hydrogels made of the recombinant spider silk protein eADF4(C16) were used to encapsulate the model biologicals BSA, HRP, and LYS by direct loading or through diffusion, and their release was studied. Release of model biologicals from eADF4(C16) hydrogels is in part dependent on the electrostatic interaction between the biological and the recombinant spider silk protein variant used. In addition, tailoring the pore sizes of eADF4(C16) hydrogels strongly influenced the release kinetics. In a second approach, a particles-in-hydrogel system was used, showing a prolonged release in comparison with that of plain hydrogels (from days to week). The particle-enforced spider silk hydrogels are injectable and can be 3D printed. These initial studies indicate the potential of recombinant spider silk proteins to design novel injectable hydrogels that are suitable for delivering therapeutic biologics.
AUTHOR
Title
Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing
[Abstract]
Year
2017
Journal/Proceedings
Macromolecular Bioscience
Reftype
DOI/URL
DOI
Groups
AbstractRecombinantly produced spider silk proteins have high potential for bioengineering and various biomedical applications because of their biocompatibility, biodegradability, and low immunogenicity. Here, the recently described small spider silk protein eMaSp1s is assembled into hydrogels, which can be 3D printed into scaffolds. Further, blending with a recombinantly produced MaSp2 derivative eADF4(C16) alters the mechanical properties of the resulting hydrogels. Different spider silk hydrogels also show a distinct recovery after a high shear stress deformation, exhibiting the tunability of their features for selected applications.
AUTHOR
Year
2017
Journal/Proceedings
Biofabrication
Reftype
DOI/URL
URL
Groups
AbstractBioinks, 3D cell culture systems which can be printed, are still in the early development stages. Currently, extensive research is going into designing printers to be more accommodating to bioinks, designing scaffolds with stiff materials as support structures for the often soft bioinks, and modifying the bioinks themselves. Recombinant spider silk proteins, a potential biomaterial component for bioinks, have high biocompatibility, can be processed into several morphologies and can be modified with cell adhesion motifs to enhance their bioactivity. In this work, thermally gelled hydrogels made from recombinant spider silk protein encapsulating mouse fibroblast cell line BALB/3T3 were prepared and characterized. The bioinks were evaluated for performance in vitro both before and after printing, and it was observed that unprinted bioinks provided a good platform for cell spreading and proliferation, while proliferation in printed scaffolds was prohibited. To improve the properties of the printed hydrogels, gelatin was given as an additive and thereby served indirectly as a plasticizer, improving the resolution of printed strands. Taken together, recombinant spider silk proteins and hydrogels made thereof show good potential as a bioink, warranting further development.
AUTHOR
Year
2016
Journal/Proceedings
ACS Applied Materials and Interfaces
Reftype
DOI/URL
DOI
Groups
AbstractLike many other natural materials, silk is hierarchically structured from the amino acid level up to the cocoon or spider web macroscopic structures. Despite being used industrially in a number of applications, hierarchically structured silk fibroin objects with a similar degree of architectural control as in natural structures have not been produced yet due to limitations in fabrication processes. In a combined top-down and bottom-up approach, we exploit the freedom in macroscopic design offered by 3D printing and the template-guided assembly of ink building blocks at the meso- and nanolevel to fabricate hierarchical silk porous materials with unprecedented structural control. Pores with tunable sizes in the range 40–350 μm are generated by adding sacrificial organic microparticles as templates to a silk fibroin-based ink. Commercially available wax particles or monodisperse polycaprolactone made by microfluidics can be used as microparticle templates. Since closed pores are generated after template removal, an ultrasonication treatment can optionally be used to achieve open porosity. Such pore templating particles can be further modified with nanoparticles to create a hierarchical template that results in porous structures with a defined nanotopography on the pore walls. The hierarchically porous silk structures obtained with this processing technique can potentially be utilized in various application fields from structural materials to thermal insulation to tissue engineering scaffolds.
AUTHOR
Year
2015
Journal/Proceedings
Angewandte Chemie International Edition
Reftype
DOI/URL
DOI
Groups
AbstractBiofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell–material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication.
AUTHOR
Year
2
Journal/Proceedings
Angewandte Chemie International Edition
Reftype
DOI/URL
DOI
Groups
AbstractHydrogels are widely used in various biomedical applications, as they cannot only serve as materials for biofabrication but also as depots for the administration of drugs. However, the possibilities of formulation of water-insoluble drugs in hydrogels are rather limited. In this study, we assembled recombinant spider silk gels using a new processing route with aqueous-organic co-solvents, and the properties of these gels could be controlled by the choice of the co-solvent. The presence of the organic co-solvent further enabled the incorporation of hydrophobic drugs as exemplary shown for 6-mercaptopurine. The developed gels showed shear-thinning behaviour and could be easily injected to serve e.g. as drug depots and could even be 3D printed to serve as scaffolds for biofabrication. With this new processing route, the formulation of water-insoluble drugs in spider silk-based depots is possible, circumventing common pharmaceutical solubility issues.