REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Silk Fibroin
Matching entries: 11 /11
All Groups
AUTHOR Vyas, Cian and Zhang, Jun and Øvrebø, Øystein and Huang, Boyang and Roberts, Iwan and Setty, Mohan and Allardyce, Benjamin and Haugen, Håvard and Rajkhowa, Rangam and Bartolo, Paulo
Title 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Polycaprolactone (PCL) scaffolds have been widely investigated for tissue engineering applications, however, they exhibit poor cell adhesion and mechanical properties. Subsequently, PCL composites have been produced to improve the material properties. This study utilises a natural material, Bombyx mori silk microparticles (SMP) prepared by milling silk fibre, to produce a composite to enhance the scaffolds properties. Silk is biocompatible and biodegradable with excellent mechanical properties. However, there are no studies using SMPs as a reinforcing agent in a 3D printed thermoplastic polymer scaffold. PCL/SMP (10, 20, 30 wt%) composites were prepared by melt blending. Rheological analysis showed that SMP loading increased the shear thinning and storage modulus of the material. Scaffolds were fabricated using a screw-assisted extrusion-based additive manufacturing system. Scanning electron microscopy and X-ray microtomography was used to determine scaffold morphology. The scaffolds had high interconnectivity with regular printed fibres and pore morphologies within the designed parameters. Compressive mechanical testing showed that the addition of SMP significantly improved the compressive Young's modulus of the scaffolds. The scaffolds were more hydrophobic with the inclusion of SMP which was linked to a decrease in total protein adsorption. Cell behaviour was assessed using human adipose derived mesenchymal stem cells. A cytotoxic effect was observed at higher particle loading (30 wt%) after 7 days of culture. By day 21, 10 wt% loading showed significantly higher cell metabolic activity and proliferation, high cell viability, and cell migration throughout the scaffold. Calcium mineral deposition was observed on the scaffolds during cell culture. Large calcium mineral deposits were observed at 30 wt% and smaller calcium deposits were observed at 10 wt%. This study demonstrates that SMPs incorporated into a PCL scaffold provided effective mechanical reinforcement, improved the rate of degradation, and increased cell proliferation, demonstrating potential suitability for bone tissue engineering applications.
AUTHOR Zhang, Xiao and Liu, Yang and Luo, Chunyang and Zhai, Chenjun and Li, Zuxi and Zhang, Yi and Yuan, Tao and Dong, Shilei and Zhang, Jiyong and Fan, Weimin
Title Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
As cartilage tissue lacks the innate ability to mount an adequate regeneration response, damage to it is detrimental to the quality of life of the subject. The emergence of three-dimensional bioprinting (3DBP) technology presents an opportunity to repair articular cartilage defects. However, widespread adoption of this technique has been impeded by difficulty in preparing a suitable bioink and the toxicity inherent in the chemical crosslinking process of most bioinks. Our objective was to develop a crosslinker-free bioink with the same biological activity as the original cartilage extracellular matrix (ECM) and good mechanical strength. We prepared bioinks containing different concentrations of silk fibroin and decellularized extracellular matrix (SF-dECM bioinks) mixed with bone marrow mesenchymal stem cells (BMSCs) for 3D bioprinting. SF and dECM interconnect with each other through physical crosslinking and entanglement. A porous structure was formed by removing the polyethylene glycol from the SF-dECM bioink. The results showed the SF-dECM construct had a suitable mechanical strength and degradation rate, and the expression of chondrogenesis-specific genes was found to be higher than that of the SF control construct group. Finally, we confirmed that a SF-dECM construct that was designed to release TGF-β3 had the ability to promote chondrogenic differentiation of BMSCs and provided a good cartilage repair environment, suggesting it is an ideal scaffold for cartilage tissue engineering.
AUTHOR Li, Zuxi and Zhang, Xiao and Yuan, Tao and Zhang, Yi and Luo, Chunyang and Zhang, Jiyong and Liu, Yang and Fan, Weimin
Title Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration [Abstract]
Year 2020
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
The recent advent of 3D bioprinting of biopolymers provides a novel method for fabrication of tissue-engineered scaffolds and also offers a potentially promising avenue in cartilage regeneration. Silk fibroin (SF) is one of the most popular biopolymers used for 3D bioprinting, but further application of SF is hindered by its limited biological activities. Incorporation of growth factors (GFs) has been identified as a solution to improve biological function. Platelet-rich plasma (PRP) is an autologous resource of GFs, which has been widely used in clinic. In this study, we have developed SF-based bioinks incorporated with different concentrations of PRP (12.5%, 25%, and 50%; vol/vol). Release kinetic studies show that SF-PRP bioinks could achieve controlled release of GFs. Subsequently, SF-PRP bioinks were successfully fabricated into scaffolds by bioprinting. Our results revealed that SF-PRP scaffolds possessed proper internal pore structure, good biomechanical properties, and a suitable degradation rate for cartilage regeneration. Live/dead staining showed that 3D, printed SF-PRP scaffolds were biocompatible. Moreover, in vitro studies revealed that tissue-engineered cartilage from the SF-PRP group exhibited improved qualities compared with the pure SF controls, according to histological and immunohistochemical findings. Biochemical evaluations confirmed that SF-PRP (50% PRP, v/v) scaffolds allowed the largest increases in collagen and glycosaminoglycan concentrations, when compared with the pure SF group. These findings suggest that 3D, printed SF-PRP scaffolds could be potential candidates for cartilage tissue engineering.
AUTHOR Sanz-Fraile, Hector and Amorós, Susana and Mendizabal, Irene Isabel and Gálvez-Montón, Carolina and Prat-Vidal, Cristina and Bayés-Genís, Antoni and Navajas, Daniel and Farre, Ramon and Otero, Jorge
Title Silk-reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture [Abstract]
Year 2020
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx Mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems like phase separation and collagen denaturation appears during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In the present work, we present a new, simple and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure which results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and Atomic Force Microscopy respectively, showed a more than two-fold stiffening as compared with collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived mesenchymal stem cells cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen.
AUTHOR Sharma, Aarushi and Desando, Giovanna and Petretta, Mauro and Chawla, Shikha and Bartolotti, Isabella and Manferdini, Cristina and Paolella, Francesca and Gabusi, Elena and Trucco, Diego and Ghosh, Sourabh and Lisignoli, Gina
Title Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional Bioprinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells
Year 2019
Journal/Proceedings ACS Biomaterials Science & Engineering
Reftype
DOI/URL DOI
AUTHOR Kumari, Sushma and Bargel, Hendrik and Anby, Mette U. and Lafargue, David and Scheibel, Thomas
Title Recombinant Spider Silk Hydrogels for Sustained Release of Biologicals [Abstract]
Year 2018
Journal/Proceedings ACS Biomaterials Science and Engineering
Reftype
DOI/URL DOI
Abstract
Therapeutic biologics (i.e., proteins) have been widely recognized for the treatment, prevention, and cure of a variety of human diseases and syndromes. However, design of novel protein-delivery systems to achieve a nontoxic, constant, and efficient delivery with minimal doses of therapeutic biologics is still challenging. Here, recombinant spider silk-based materials are employed as a delivery system for the administration of therapeutic biologicals. Hydrogels made of the recombinant spider silk protein eADF4(C16) were used to encapsulate the model biologicals BSA, HRP, and LYS by direct loading or through diffusion, and their release was studied. Release of model biologicals from eADF4(C16) hydrogels is in part dependent on the electrostatic interaction between the biological and the recombinant spider silk protein variant used. In addition, tailoring the pore sizes of eADF4(C16) hydrogels strongly influenced the release kinetics. In a second approach, a particles-in-hydrogel system was used, showing a prolonged release in comparison with that of plain hydrogels (from days to week). The particle-enforced spider silk hydrogels are injectable and can be 3D printed. These initial studies indicate the potential of recombinant spider silk proteins to design novel injectable hydrogels that are suitable for delivering therapeutic biologics.
AUTHOR Thamm, Christopher and DeSimone, Elise and Scheibel, Thomas
Title Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing [Abstract]
Year 2017
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Recombinantly produced spider silk proteins have high potential for bioengineering and various biomedical applications because of their biocompatibility, biodegradability, and low immunogenicity. Here, the recently described small spider silk protein eMaSp1s is assembled into hydrogels, which can be 3D printed into scaffolds. Further, blending with a recombinantly produced MaSp2 derivative eADF4(C16) alters the mechanical properties of the resulting hydrogels. Different spider silk hydrogels also show a distinct recovery after a high shear stress deformation, exhibiting the tunability of their features for selected applications.
AUTHOR DeSimone, Elise and Schacht, Kristin and Pellert, Alexandra and Scheibel, Thomas
Title Recombinant spider silk-based bioinks [Abstract]
Year 2017
Journal/Proceedings Biofabrication
Reftype
DOI/URL URL
Abstract
Bioinks, 3D cell culture systems which can be printed, are still in the early development stages. Currently, extensive research is going into designing printers to be more accommodating to bioinks, designing scaffolds with stiff materials as support structures for the often soft bioinks, and modifying the bioinks themselves. Recombinant spider silk proteins, a potential biomaterial component for bioinks, have high biocompatibility, can be processed into several morphologies and can be modified with cell adhesion motifs to enhance their bioactivity. In this work, thermally gelled hydrogels made from recombinant spider silk protein encapsulating mouse fibroblast cell line BALB/3T3 were prepared and characterized. The bioinks were evaluated for performance in vitro both before and after printing, and it was observed that unprinted bioinks provided a good platform for cell spreading and proliferation, while proliferation in printed scaffolds was prohibited. To improve the properties of the printed hydrogels, gelatin was given as an additive and thereby served indirectly as a plasticizer, improving the resolution of printed strands. Taken together, recombinant spider silk proteins and hydrogels made thereof show good potential as a bioink, warranting further development.
AUTHOR Sommer, Marianne R. and Schaffner, Manuel and Carnelli, Davide and Studart, André R.
Title 3D Printing of Hierarchical Silk Fibroin Structures [Abstract]
Year 2016
Journal/Proceedings ACS Applied Materials and Interfaces
Reftype
DOI/URL DOI
Abstract
Like many other natural materials, silk is hierarchically structured from the amino acid level up to the cocoon or spider web macroscopic structures. Despite being used industrially in a number of applications, hierarchically structured silk fibroin objects with a similar degree of architectural control as in natural structures have not been produced yet due to limitations in fabrication processes. In a combined top-down and bottom-up approach, we exploit the freedom in macroscopic design offered by 3D printing and the template-guided assembly of ink building blocks at the meso- and nanolevel to fabricate hierarchical silk porous materials with unprecedented structural control. Pores with tunable sizes in the range 40–350 μm are generated by adding sacrificial organic microparticles as templates to a silk fibroin-based ink. Commercially available wax particles or monodisperse polycaprolactone made by microfluidics can be used as microparticle templates. Since closed pores are generated after template removal, an ultrasonication treatment can optionally be used to achieve open porosity. Such pore templating particles can be further modified with nanoparticles to create a hierarchical template that results in porous structures with a defined nanotopography on the pore walls. The hierarchically porous silk structures obtained with this processing technique can potentially be utilized in various application fields from structural materials to thermal insulation to tissue engineering scaffolds.
AUTHOR Schacht, Kristin and J{"{u}}ngst, Tomasz and Schweinlin, Matthias and Ewald, Andrea and Groll, J{"{u}}rgen and Scheibel, Thomas
Title Biofabrication of Cell-Loaded 3D Spider Silk Constructs [Abstract]
Year 2015
Journal/Proceedings Angewandte Chemie International Edition
Reftype
DOI/URL DOI
Abstract
Biofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell–material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication.
AUTHOR Neubauer, Vanessa J. and Trossmann, Vanessa T. and Jacobi, Sofia and Döbl, Annika and Scheibel, Thomas
Title Aqueous-Organic Solvent Derived Recombinant Spider Silk Gels as Depots for Drugs [Abstract]
Year 2
Journal/Proceedings Angewandte Chemie International Edition
Reftype
DOI/URL DOI
Abstract
Hydrogels are widely used in various biomedical applications, as they cannot only serve as materials for biofabrication but also as depots for the administration of drugs. However, the possibilities of formulation of water-insoluble drugs in hydrogels are rather limited. In this study, we assembled recombinant spider silk gels using a new processing route with aqueous-organic co-solvents, and the properties of these gels could be controlled by the choice of the co-solvent. The presence of the organic co-solvent further enabled the incorporation of hydrophobic drugs as exemplary shown for 6-mercaptopurine. The developed gels showed shear-thinning behaviour and could be easily injected to serve e.g. as drug depots and could even be 3D printed to serve as scaffolds for biofabrication. With this new processing route, the formulation of water-insoluble drugs in spider silk-based depots is possible, circumventing common pharmaceutical solubility issues.