BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Bone Tissue Engineering
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
All Groups
- Biomaterial
- Non-cellularized gels/pastes
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Ionic Liquids
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Magnetorheological fluid (MR fluid – MRF)
- Salecan
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Jeffamine
- Poly(methyl methacrylate) (PMMA)
- Polyethylene
- SEBS
- Polypropylene Oxide (PPO)
- Carbopol
- Sucrose Acetate
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- Cellulose
- Novogel
- carboxybetaine acrylamide (CBAA)
- Hyaluronic Acid
- Peptide gel
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
- Polyethylene glycol (PEG) based
- α-Bioink
- Poly(Acrylic Acid)
- Collagen
- Elastin
- Heparin
- sulfobetaine methacrylate (SBMA)
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Silk Fibroin
- Pyrogallol
- Xanthan Gum
- Fibrinogen
- Fibrin
- Paeoniflorin
- Fibronectin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Solid Dosage Drugs
- Thermoplastics
- Coaxial Extruder
- Non-cellularized gels/pastes
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- Chondrocytes
- Embrionic Kidney (HEK)
- Corneal Stromal Cells
- Annulus Fibrosus Cells
- Fibroblasts
- β cells
- Astrocytes
- Myoblasts
- Pericytes
- Hepatocytes
- Cancer Cell Lines
- Bacteria
- Epicardial Cells
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Extracellular Vesicles
- Osteoblasts
- Monocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Epithelial
- Neutrophils
- Adipocytes
- Smooth Muscle Cells
- T cells
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Stem Cells
- Spheroids
- Meniscus Cells
- Synoviocytes
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Neurons
- Macrophages
- Human Trabecular Meshwork Cells
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Institution
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- University of Toronto
- Brown University
- Polish Academy of Sciences
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Montreal University
- Shandong Medical University
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Harbin Institute of Technology
- Technical University of Berlin
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- University Children's Hospital Zurich
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- University of Aveiro
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- University of Sheffield
- University of Michigan – Biointerfaces Institute
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- University of Taiwan
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- University of Vilnius
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- Tiangong University
- Xi’an Children’s Hospital
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Innsbruck University
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Politecnico di Torino
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- ENEA
- University of Nottingham
- University of Geneva
- SINTEF
- Rice University
- Jiangsu University
- Trinity College
- Novartis
- University of Central Florida
- Hefei University
- Leibniz University Hannover
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Biomaterial Processing
- Tissue Models – Drug Discovery
- Industrial
- Drug Discovery
- In Vitro Models
- Robotics
- Electronics – Robotics – Industrial
- Medical Devices
- Tissue and Organ Biofabrication
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Muscle Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Dental Tissue Engineering
- Drug Delivery
- Urethra Tissue Engineering
- Skin Tissue Engineering
- Uterus Tissue Engineering
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
- Review Paper
- Printing Technology
AUTHOR
Title
Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interface
Year
2023
Journal/Proceedings
ACS Appl. Mater. Interfaces
Reftype
DOI/URL
DOI
Groups
AUTHOR
Title
Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues
[Abstract]
Year
2023
Journal/Proceedings
Bioactive Materials
Reftype
Groups
AbstractPeriodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR
Title
Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues
[Abstract]
Year
2023
Journal/Proceedings
Bioactive Materials
Reftype
Groups
AbstractPeriodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR
Title
Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues
[Abstract]
Year
2023
Journal/Proceedings
Bioactive Materials
Reftype
Groups
AbstractPeriodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR
Title
Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues
[Abstract]
Year
2023
Journal/Proceedings
Bioactive Materials
Reftype
Groups
AbstractPeriodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
AUTHOR
Title
A Highly Ordered, Nanostructured Fluorinated CaP-Coated Melt Electrowritten Scaffold for Periodontal Tissue Regeneration
[Abstract]
Year
2021
Journal/Proceedings
Advanced Healthcare Materials
Reftype
DOI/URL
DOI
Groups
AbstractAbstract Periodontitis is a chronic inflammatory, bacteria-triggered disorder affecting nearly half of American adults. Although some level of tissue regeneration is realized, its low success in complex cases demands superior strategies to amplify regenerative capacity. Herein, highly ordered scaffolds are engineered via Melt ElectroWriting (MEW), and the effects of strand spacing, as well as the presence of a nanostructured fluorinated calcium phosphate (F/CaP) coating on the adhesion/proliferation, and osteogenic differentiation of human-derived periodontal ligament stem cells, are investigated. Upon initial cell-scaffold interaction screening aimed at defining the most suitable design, MEW poly(ε-caprolactone) scaffolds with 500 µm strand spacing are chosen. Following an alkali treatment, scaffolds are immersed in a pre-established solution to allow for coating formation. The presence of a nanostructured F/CaP coating leads to a marked upregulation of osteogenic genes and attenuated bacterial growth. In vivo findings confirm that the F/CaP-coated scaffolds are biocompatible and lead to periodontal regeneration when implanted in a rat mandibular periodontal fenestration defect model. In aggregate, it is considered that this work can contribute to the development of personalized scaffolds capable of enabling tissue-specific differentiation of progenitor cells, and thus guide simultaneous and coordinated regeneration of soft and hard periodontal tissues, while providing antimicrobial protection.
AUTHOR
Year
2020
Journal/Proceedings
Acta Biomaterialia
Reftype
Groups
AbstractOne of the most damaging pathologies that affects the health of both soft and hard tissues around the tooth is periodontitis. Clinically, periodontal tissue destruction has been managed by an integrated approach involving elimination of injured tissues followed by regenerative strategies with bone substitutes and/or barrier membranes. Regrettably, a barrier membrane with predictable mechanical integrity and multifunctional therapeutic features has yet to be established. Herein, we report a fiber-reinforced hydrogel with unprecedented tunability in terms of mechanical competence and therapeutic features by integration of highly porous poly(ε-caprolactone) fibrous mesh(es) with well-controlled 3D architecture into bioactive amorphous magnesium phosphate-laden gelatin methacryloyl hydrogels. The presence of amorphous magnesium phosphate and PCL mesh in the hydrogel can control the mechanical properties and improve the osteogenic ability, opening a tremendous opportunity in guided bone regeneration (GBR). Results demonstrate that the presence of PCL meshes fabricated via melt electrowriting can delay hydrogel degradation preventing soft tissue invasion and providing the mechanical barrier to allow time for slower migrating progenitor cells to participate in bone regeneration due to their ability to differentiate into bone-forming cells. Altogether, our approach offers a platform technology for the development of the next-generation of GBR membranes with tunable mechanical and therapeutic properties to amplify bone regeneration in compromised sites.
AUTHOR
Title
Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers
[Abstract]
Year
2019
Journal/Proceedings
Biomaterials
Reftype
Groups
AbstractSuccessful tissue engineering requires the generation of human scale implants that mimic the structure, composition and mechanical properties of native tissues. Here, we report a novel biofabrication strategy that enables the engineering of structurally organised tissues by guiding the growth of cellular spheroids within arrays of 3D printed polymeric microchambers. With the goal of engineering stratified articular cartilage, inkjet bioprinting was used to deposit defined numbers of mesenchymal stromal cells (MSCs) and chondrocytes into pre-printed microchambers. These jetted cell suspensions rapidly underwent condensation within the hydrophobic microchambers, leading to the formation of organised arrays of cellular spheroids. The microchambers were also designed to provide boundary conditions to these spheroids, guiding their growth and eventual fusion, leading to the development of stratified cartilage tissue with a depth-dependant collagen fiber architecture that mimicked the structure of native articular cartilage. Furthermore, the composition and biomechanical properties of the bioprinted cartilage was also comparable to the native tissue. Using multi-tool biofabrication, we were also able to engineer anatomically accurate, human scale, osteochondral templates by printing this microchamber system on top of a hypertrophic cartilage region designed to support endochondral bone formation and then maintaining the entire construct in long-term bioreactor culture to enhance tissue development. This bioprinting strategy provides a versatile and scalable approach to engineer structurally organised cartilage tissues for joint resurfacing applications.
AUTHOR
Title
Pore-forming bioinks to enable Spatio-temporally defined gene delivery in bioprinted tissues
[Abstract]
Year
2019
Journal/Proceedings
Journal of Controlled Release
Reftype
Groups
AbstractThe regeneration of complex tissues and organs remains a major clinical challenge. With a view towards bioprinting such tissues, we developed a new class of pore-forming bioink to spatially and temporally control the presentation of therapeutic genes within bioprinted tissues. By blending sacrificial and stable hydrogels, we were able to produce bioinks whose porosity increased with time following printing. When combined with amphipathic peptide-based plasmid DNA delivery, these bioinks supported enhanced non-viral gene transfer to stem cells in vitro. By modulating the porosity of these bioinks, it was possible to direct either rapid and transient (pore-forming bioinks), or slower and more sustained (solid bioinks) transfection of host or transplanted cells in vivo. To demonstrate the utility of these bioinks for the bioprinting of spatially complex tissues, they were next used to zonally position stem cells and plasmids encoding for either osteogenic (BMP2) or chondrogenic (combination of TGF-β3, BMP2 and SOX9) genes within networks of 3D printed thermoplastic fibers to produce mechanically reinforced, gene activated constructs. In vivo, these bioprinted tissues supported the development of a vascularised, bony tissue overlaid by a layer of stable cartilage. When combined with multiple-tool biofabrication strategies, these gene activated bioinks can enable the bioprinting of a wide range of spatially complex tissues.
AUTHOR
Title
Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering
[Abstract]
Year
2017
Journal/Proceedings
Tissue Engineering Part A
Reftype
DOI/URL
DOI
Groups
AbstractRegeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-g-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bonemarrow-derived mesenchymal stemcells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization andmineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.
AUTHOR
Year
2023
Journal/Proceedings
Journal of Dental Research
Reftype
DOI/URL
DOI
Groups
AbstractSuccessful periodontal repair and regeneration requires the coordinated responses from soft and hard tissues as well as the soft tissue–to–bone interfaces. Inspired by the hierarchical structure of native periodontal tissues, tissue engineering technology provides unique opportunities to coordinate multiple cell types into scaffolds that mimic the natural periodontal structure in vitro. In this study, we designed and fabricated highly ordered multicompartmental scaffolds by melt electrowriting, an advanced 3-dimensional (3D) printing technique. This strategy attempted to mimic the characteristic periodontal microenvironment through multicompartmental constructs comprising 3 tissue-specific regions: 1) a bone compartment with dense mesh structure, 2) a ligament compartment mimicking the highly aligned periodontal ligaments (PDLs), and 3) a transition region that bridges the bone and ligament, a critical feature that differentiates this system from mono- or bicompartmental alternatives. The multicompartmental constructs successfully achieved coordinated proliferation and differentiation of multiple cell types in vitro within short time, including both ligamentous- and bone-derived cells. Long-term 3D coculture of primary human osteoblasts and PDL fibroblasts led to a mineral gradient from calcified to uncalcified regions with PDL-like insertions within the transition region, an effect that is challenging to achieve with mono- or bicompartmental platforms. This process effectively recapitulates the key feature of interfacial tissues in periodontium. Collectively, this tissue-engineered approach offers a fundament for engineering periodontal tissue constructs with characteristic 3D microenvironments similar to native tissues. This multicompartmental 3D printing approach is also highly compatible with the design of next-generation scaffolds, with both highly adjustable compartmentalization properties and patient-specific shapes, for multitissue engineering in complex periodontal defects.
AUTHOR
Title
3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration
[Abstract]
Year
2020
Journal/Proceedings
Science Advances
Reftype
Groups
AbstractTherapeutic growth factor delivery typically requires supraphysiological dosages, which can cause undesirable off-target effects. The aim of this study was to 3D bioprint implants containing spatiotemporally defined patterns of growth factors optimized for coupled angiogenesis and osteogenesis. Using nanoparticle functionalized bioinks, it was possible to print implants with distinct growth factor patterns and release profiles spanning from days to weeks. The extent of angiogenesis in vivo depended on the spatial presentation of vascular endothelial growth factor (VEGF). Higher levels of vessel invasion were observed in implants containing a spatial gradient of VEGF compared to those homogenously loaded with the same total amount of protein. Printed implants containing a gradient of VEGF, coupled with spatially defined BMP-2 localization and release kinetics, accelerated large bone defect healing with little heterotopic bone formation. This demonstrates the potential of growth factor printing, a putative point of care therapy, for tightly controlled tissue regeneration.
AUTHOR
Title
3D printed microchannel networks to direct vascularisation during endochondral bone repair
[Abstract]
Year
2018
Journal/Proceedings
Biomaterials
Reftype
Groups
AbstractBone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.
AUTHOR
Title
Biocooperative Regenerative Materials by Harnessing Blood-Clotting and Peptide Self-Assembly
[Abstract]
Year
2024
Journal/Proceedings
Advanced Materials
Reftype
DOI/URL
DOI
Groups
AbstractAbstract The immune system has evolved to heal small ruptures and fractures with remarkable efficacy through regulation of the regenerative hematoma (RH); a rich and dynamic environment that coordinates numerous molecular and cellular processes to achieve complete repair. Here, a biocooperative approach that harnesses endogenous molecules and natural healing to engineer personalized regenerative materials is presented. Peptide amphiphiles (PAs) are co-assembled with blood components during coagulation to engineer a living material that exhibits key compositional and structural properties of the RH. By exploiting non-selective and selective PA-blood interactions, the material can be immediately manipulated, mechanically-tuned, and 3D printed. The material preserves normal platelet behavior, generates and provides a continuous source of growth factors, and promotes in vitro growth of mesenchymal stromal cells, endothelial cells, and fibroblasts. Furthermore, using a personalized autologous approach to convert whole blood into PA-blood gel implants, bone regeneration is shown in a critical-sized rat calvarial defect. This study provides proof-of-concept for a biocooperative approach that goes beyond biomimicry by using mechanisms that Nature has evolved to heal as tools to engineer accessible, personalized, and regenerative biomaterials that can be readily formed at point of use.
AUTHOR
Title
Crystal Growth of 3D Poly(ε-caprolactone) Based Bone Scaffolds and Its Effects on the Physical Properties and Cellular Interactions
[Abstract]
Year
2022
Journal/Proceedings
Advanced Science
Reftype
Groups
AbstractAbstract Extrusion additive manufacturing is widely used to fabricate polymer-based 3D bone scaffolds. However, the insight views of crystal growths, scaffold features and eventually cell-scaffold interactions are still unknown. In this work, melt and solvent extrusion additive manufacturing techniques are used to produce scaffolds considering highly analogous printing conditions. Results show that the scaffolds produced by these two techniques present distinct physiochemical properties, with melt-printed scaffolds showing stronger mechanical properties and solvent-printed scaffolds showing rougher surface, higher degradation rate, and faster stress relaxation. These differences are attributed to the two different crystal growth kinetics, temperature-induced crystallization (TIC) and strain-induced crystallization (SIC), forming large/integrated spherulite-like and a small/fragmented lamella-like crystal regions respectively. The stiffer substrate of melt-printed scaffolds contributes to higher ratio of nuclear Yes-associated protein (YAP) allocation, favoring cell proliferation and differentiation. Faster relaxation and degradation of solvent-printed scaffolds result in dynamic surface, contributing to an early-stage faster osteogenesis differentiation.
AUTHOR
Title
3D bioprinting advanced biomaterials for craniofacial and dental tissue engineering – A review
[Abstract]
Year
2024
Journal/Proceedings
Materials & Design
Reftype
Groups
AbstractThe rising incidence of defects in oral and maxillofacial tissues, linked to factors such as trauma, tumors, periodontal disease, and aging, poses significant challenges. Current treatments, involving autografts, allografts, and synthetic graft materials, face obstacles like secondary trauma, inflammation, and inadequate biocompatibility. Tissue engineering, integrating cell biology and material science since the 1990s, relies heavily on biomaterial scaffolds to promote cell adhesion, proliferation, and differentiation. Traditional scaffold fabrication, including 3D printing, methods lack precision, hindering effective tissue repair by controlling cell distribution and the extracellular matrix. Biomedical engineering advancements have introduced 3D bioprinting as an innovative solution, overcoming constraints of conventional scaffolds. 3D bioprinting technology enables rapid and precise reconstruction of damaged tissues with loaded cells, mimicking in vivo environments. This paper explores key 3D bioprinting technologies such as inkjet-based, extrusion-based, fused deposition modeling, laser-assisted, VAT photopolymerization, freeform reversible embedding of suspended hydrogels, and sacrificial template printing. The selection of materials with suitable mechanical and biological properties is crucial, considering the distinct requirements of each technique. This review provides a comprehensive survey of research progress on 3D printing biomaterial applications in craniofacial and dental tissue engineering, serving as a valuable reference for future medical research.
AUTHOR
Title
3D-Printed Biomimetic Hydroxyapatite Composite Scaffold Loaded with Curculigoside for Rat Cranial Defect Repair
[Abstract]
Year
2024
Journal/Proceedings
ACS Omega
Reftype
DOI/URL
DOI
Groups
AbstractThe treatment of various large bone defects has remained a challenge for orthopedic surgeons for a long time. Recent research indicates that curculigoside (CUR) extracted from the curculigo plant exerts a positive influence on bone formation, contributing to fracture healing. In this study, we employed emulsification/solvent evaporation techniques to successfully fabricate poly(ε-caprolactone) nanoparticles loaded with curculigoside (CUR@PM). Subsequently, using three-dimensional (3D) printing technology, we successfully developed a bioinspired composite scaffold named HA/GEL/SA/CUR@PM (HGSC), chemically cross-linked with calcium chloride, to ensure scaffold stability. Further characterization of the scaffold’s physical and chemical properties revealed uniform pore size, good hydrophilicity, and appropriate mechanical properties while achieving sustained drug release for up to 12 days. In vitro experiments demonstrated the nontoxicity, good biocompatibility, and cell proliferative properties of HGSC. Through alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, cell migration assays, tube formation assays, and detection of angiogenic and osteogenic gene proteins, we confirmed the HGSC composite scaffold’s significant angiogenic and osteoinductive capabilities. Eight weeks postimplantation in rat cranial defects, Micro-computed tomography (CT) and histological observations revealed pronounced angiogenesis and new bone growth in areas treated with the HGSC composite scaffold. These findings underscore the scaffold’s exceptional angiogenic and osteogenic properties, providing a solid theoretical basis for clinical bone repair and demonstrating its potential in promoting vascularization and bone regeneration.
AUTHOR
Title
3D-Printed Graphene and Graphene Quantum Dot-Reinforced Polycaprolactone Scaffolds for Bone-Tissue Engineering
[Abstract]
Year
2024
Journal/Proceedings
ACS Appl. Nano Mater.
Reftype
DOI/URL
DOI
Groups
AbstractThe regeneration of large-scale bone loss due to accidents, trauma, diseases, or tumor resection is still a critical clinical challenge. With the development of additive manufacturing technology and advanced biomaterials, 3D-printed biocompatible synthetic polymer scaffolds have been widely studied for their key roles in supporting bone tissue regeneration. Scaffold aims to provide mechanical properties that match the host bone as well as biological activities that can effectively promote cell proliferation and differentiation, ultimately facilitating bone tissue regeneration. Due to its unique biocompatibility and biodegradability, polycaprolactone (PCL) becomes one of the dominant synthetic polymeric materials considered for scaffold fabrication. However, using PCL alone presents insufficient mechanical properties; thus, different functional fillers have been added to modulate both the mechanical and biological performance of fabricated scaffolds. Among all functional fillers, carbon nanomaterials, particularly graphene (G), have shown an emerging trend. Graphene quantum dots (GQD), a member of the graphene family, are regarded as an ideal next-generation functional filler for scaffold fabrication. It presents high solubility in water, controllable dose-dependent cytotoxicity similar to that of G, and unique biological properties benefiting from smaller sizes. Current research using GQD for tissue engineering applications is limited, and the systemic comparison between G and GQD at different concentrations is also missing. This study, for the first time, evaluates and compares the impact of incorporating G and GQD into PCL bone tissue engineering scaffolds from surface, thermal, mechanical, and biological perspectives. Results suggested that the addition of both materials under 5 wt % significantly improved both the mechanical and biological performance of PCL scaffolds. Under 3 wt %, PCL/GQD scaffolds presented better compressive strength while maintaining the same level of biological performance compared with PCL/G scaffolds, revealing the strong potential for future in vivo studies and bone tissue regeneration applications.
AUTHOR
Title
3D-printed Mg-substituted hydroxyapatite/ gelatin methacryloyl hydrogels encapsulated with PDA@DOX particles for bone tumor therapy and bone tissue regeneration
Year
2024
Journal/Proceedings
IJB
Reftype
DOI/URL
DOI
Groups
AUTHOR
Year
2024
Journal/Proceedings
Bioprinting
Reftype
Groups
AbstractBone injuries are increasing due to the ageing of the population, and the previous methods of treating bone injuries such as grafts face many limitations, especially in the treatment of large bone injuries. Recently, bone tissue engineering has been introduced as a substitute method for bone regeneration. Scaffolding is one of the most important stages of bone tissue engineering. One of the newest methods of creating scaffolds is using a 3D bioprinter. This method provides several advantages over the traditional methods of fabricating scaffolds, for example, personalization, scaffold designing before production and structure controlling, reproducibility, the possibility of simultaneous cell printing, etc. Here, bone injuries and bone diseases, especially large ones, have been discussed at first. In the following, the 3D printing method is introduced and different bio-ink compositions, and various effective fctors in the design of 3d printed scaffolds were summerized. Afterward, the use of 3D printining and 3D bioprinting has been discussed in previous studies and its current challenges and future perspectives for the treatment of lrage bone defects were mentioned. It is hoped that this review will be a guide for using 3D bioprinting to treat bone injuries in near future applications.
AUTHOR
Title
Characterization and biological evaluation of 3D printed composite ink consisting of collagen, hyaluronic acid and calcium phosphate for bone regeneration
[Abstract]
Year
2024
Journal/Proceedings
Carbohydrate Polymer Technologies and Applications
Reftype
Groups
AbstractIn large bone defects the self-healing capacity is insufficient, and the current standard treatment, autologous bone grafting, has severe disadvantages such as limited availability and donor site morbidity. Alternatively, clinically available bone graft substitutes lack spatial control over scaffold architecture to anatomically match complicated bone defects. Therefore, the aim in this study was to develop a 3D printable composite biomaterial-ink to promote healing of large bone defects. The composite biomaterial-ink consisted of an organic biopolymer matrix with tyramine modified hyaluronic acid (THA) and collagen type I (Col) mixed with osteoinductive calcium phosphate particles (CaP). The biopolymer was combined with 0, 10, 20 and 30 % of either 45–63 µm or 45–106 µm CaP. µCT imaging showed a homogeneous distribution of CaP in the THA-Col hydrogel and all composites were 3D printable. In vitro cell activity assays revealed no indirect cytotoxicity using L929 cells and high cell cytocompatibility using human mesenchymal stromal cells (hMSCs). Additionally, all composites supported in vitro osteogenic differentiation of hMSCs. This study highlights the development of a 3D printable composite biomaterial-ink using CaP and THA-Col hydrogel that holds significant potential to be used as patient-specific bone graft substitute for the regeneration of large bone defects. Statement of significance This paper introduces a 3D printable composite biomaterial-ink made of osteoinductive calcium phosphate particles combined with matrix biopolymers collagen and hyaluronic acid, which was chemically modified to introduce shear thinning and shape fixation properties for 3D printing. The chemical modification only involves a small percentage of functional groups, preserving hyaluronan's biological properties. We demonstrated printability, the homogeneous distribution of the mineral phase, cytocompatibility and that the composites support osteogenesis of primary human mesenchymal stromal cells from multiple donors. The printability of the composite biomaterial-ink allows the creation of patient-specific implants with controlled geometry on porosity. This study contributes towards engineering personalized implants for replacing autologous bone grafting in all clinical situations where the bone self-healing capacity is insufficient.
AUTHOR
Title
Combining three-dimensionality and CaP glass-PLA composites: Towards an efficient vascularization in bone tissue healing
[Abstract]
Year
2024
Journal/Proceedings
Biomaterials Advances
Reftype
Groups
AbstractBone regeneration often fails due to implants/grafts lacking vascular supply, causing necrotic tissue and poor integration. Microsurgical techniques are used to overcome this issue, allowing the graft to anastomose. These techniques have limitations, including severe patient morbidity and current research focuses on stimulating angiogenesis in situ using growth factors, presenting limitations, such as a lack of control and increased costs. Non-biological stimuli are necessary to promote angiogenesis for successful bone constructs. Recent studies have reported that bioactive glass dissolution products, such as calcium-releasing nanoparticles, stimulate hMSCs to promote angiogenesis and new vasculature. Moreover, the effect of 3D microporosity has also been reported to be important for vascularisation in vivo. Therefore, we used room-temperature extrusion 3D printing with polylactic acid (PLA) and calcium phosphate (CaP) based glass scaffolds, focusing on geometry and solvent displacement for scaffold recovery. Combining both methods enabled reproducible control of 3D structure, porosity, and surface topography. Scaffolds maintained calcium ion release at physiological levels and supported human mesenchymal stem cell proliferation. Scaffolds stimulated the secretion of vascular endothelial growth factor (VEGF) after 3 days of culture. Subcutaneous implantation in vivo indicated good scaffold integration and blood vessel infiltration as early as one week after. PLA-CaP scaffolds showed increased vessel maturation 4 weeks after implantation without vascular regression. Results show PLA/CaP-based glass scaffolds, made via controlled 3D printing, support angiogenesis and vessel maturation, promising improved vascularization for bone regeneration.
AUTHOR
Title
Development of 3D Printed pNIPAM-Chitosan Scaffolds for Dentoalveolar Tissue Engineering
[Abstract]
Year
2024
Journal/Proceedings
Gels
Reftype
Groups
AbstractWhile available treatments have addressed a variety of complications in the dentoalveolar region, associated challenges have resulted in exploration of tissue engineering techniques. Often, scaffold biomaterials with specific properties are required for such strategies to be successful, development of which is an active area of research. This study focuses on the development of a copolymer of poly (N-isopropylacrylamide) (pNIPAM) and chitosan, used for 3D printing of scaffolds for dentoalveolar regeneration. The synthesized material was characterized by Fourier transform infrared spectroscopy, and the possibility of printing was evaluated through various printability tests. The rate of degradation and swelling was analyzed through gravimetry, and surface morphology was characterized by scanning electron microscopy. Viability of dental pulp stem cells seeded on the scaffolds was evaluated by live/dead analysis and DNA quantification. The results demonstrated successful copolymerization, and three formulations among various synthesized formulations were successfully 3D printed. Up to 35% degradability was confirmed within 7 days, and a maximum swelling of approximately 1200% was achieved. Furthermore, initial assessment of cell viability demonstrated biocompatibility of the developed scaffolds. While further studies are required to achieve the tissue engineering goals, the present results tend to indicate that the proposed hydrogel might be a valid candidate for scaffold fabrication serving dentoalveolar tissue engineering through 3D printing.
AUTHOR
Title
In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds
[Abstract]
Year
2024
Journal/Proceedings
Bio-Design and Manufacturing
Reftype
Hou2024
DOI/URL
DOI
Groups
AbstractPolycaprolactone (PCL) scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field. Due to the intrinsic limitations of PCL, carbon nanomaterials are often investigated to reinforce the PCL scaffolds. Despite several studies that have been conducted on carbon nanomaterials, such as graphene (G) and graphene oxide (GO), certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds. This paper addresses this limitation by investigating both the nonbiological (element composition, surface, degradation, and thermal and mechanical properties) and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications. Results showed that the incorporation of G and GO increased surface properties (reduced modulus and wettability), material crystallinity, crystallization temperature, and degradation rate. However, the variations in compressive modulus, strength, surface hardness, and cell metabolic activity strongly depended on the type of reinforcement. Finally, a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight, fiber diameter, porosity, and mechanical properties as functions of degradation time and carbon nanomaterial concentrations. The results presented in this paper enable the design of three-dimensional (3D) bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.
AUTHOR
Title
In vitro osteogenesis of hMSCs on collagen membranes embedded within LEGO®-inspired 3D printed PCL constructs for mandibular bone repair
[Abstract]
Year
2024
Journal/Proceedings
Biofabrication
Reftype
DOI/URL
DOI
Groups
AbstractThe field of bone tissue engineering aims to develop an effective and aesthetical bone graft substitute capable of repairing large mandibular defects. However, graft failure resulting from necrosis and insufficient integration with native tissue due to lack of oxygen and nutrient transportation remains a concern. To overcome these drawbacks, this study aims to develop a 3D printed polycaprolactone layered construct with a LEGO®-inspired interlocking mechanism enabling spatial distribution of biological components. To highlight its in vitro osteogenic potential, human mesenchymal stromal cells are cultured onto Bio-Gide® Compressed collagen (Col) membranes, which are embedded within the layered construct for 28 d. The osteogenic response is assessed through the measurement of proliferation, relevant markers for osteogenesis including alkaline phosphatase (ALP) activity, expression of transcriptional genes (SP7, RUNX2/SOX9) as well matrix-related genes (COL1A1, ALPL IBSP, SPP1), osteoprotegerin secretion. In vitro osteogenic differentiation results showed increased levels of these osteogenic markers, indicating the layered construct’s potential to support osteogenesis. In this study, a novel workflow of 3D printing a patient-specific LEGO®-inspired layered construct that can spatially deliver biological elements was successfully demonstrated. These layered constructs have the potential to be employed as a bone tissue engineering strategy, with particular focus on the repair of large mandibular defects.
AUTHOR
Title
Laser-induced fabrication of doped-graphene based on collagen for bone tissue engineering scaffold applications
[Abstract]
Year
2024
Journal/Proceedings
CIRP Annals
Reftype
Groups
AbstractElectro-active scaffolds play an important role in bone tissue engineering applications, serving as physical substrates for cell proliferation and osteogenic differentiation, ultimately realizing new bone regeneration. This paper discusses a novel strategy to synthesize graphene through laser-induced surface doping, using bone collagen as the carbon source, serving as a key functional filler to be combined with biocompatible, biodegradable poly(ε-caprolactone) (PCL), for the fabrication of the next generation electro-active bone tissue engineering scaffolds. Scaffolds are fabricated through material-extrusion additive manufacturing. The developed graphene is proven to present a significant enhancement effect on surface and mechanical properties over the conventional graphene material.
AUTHOR
Title
Multiparametric influence of 3D-printed organo-mineral scaffolds on bone regeneration
[Abstract]
Year
2024
Journal/Proceedings
Scientific Reports
Reftype
Nicolas2024
DOI/URL
DOI
Groups
AbstractThe development of synthetic bone substitutes that equal or exceed the efficacy of autologous graft remains challenging. In this study, a rat calvarial defect model was used as a reference to investigate the influence of composition and architecture of 3D-printed cement, with or without bioactives, on tissue regeneration. Printable cement pastes were formulated by combining hyaluronic acid and cement precursors. Cementitious scaffolds were printed with 3 different patterns. After 7 weeks of implantation with or without bone marrow, multiparametric qualitative and quantitative assessments were performed using µCT, SEM, and histology. None of the set-up strategies was as efficient as autologous cancellous bone graft to repair calvarial defects. Nonetheless, the presence of scaffold improved the skull vault closure, particularly when the scaffold was soaked in total bone marrow before implantation. No significant effect of scaffold macro-architecture was observed on tissue mineralization. Magnesium phosphate-based scaffolds (MgP) seemed to induce higher bone formation than their calcium-phosphate-based counterparts. They also displayed a quicker biodegradation and sparse remaining material was found after 7 weeks of implantation. Although further improvements are required to reach clinical settings, this study demonstrated the potential of organo-mineral cements for bone regeneration and highlighted the peculiar properties of MgP-based cements.
AUTHOR
Title
Poly-epsilon-Caprolactone 3D-Printed Porous Scaffold in a Femoral Condyle Defect Model Induces Early Osteo-Regeneration
[Abstract]
Year
2024
Journal/Proceedings
Polymers
Reftype
Groups
AbstractLarge bone reconstruction following trauma poses significant challenges for reconstructive surgeons, leading to a healthcare burden for health systems, long-term pain for patients, and complex disorders such as infections that are difficult to resolve. The use of bone substitutes is suboptimal for substantial bone loss, as they induce localized atrophy and are generally weak, and unable to support load. A combination of strong polycaprolactone (PCL)-based scaffolds, with an average channel size of 330 µm, enriched with 20% w/w of hydroxyapatite (HA), β-tricalcium phosphate (TCP), or Bioglass 45S5 (Bioglass), has been developed and tested for bone regeneration in a critical-size ovine femoral condyle defect model. After 6 weeks, tissue ingrowth was analyzed using X-ray computed tomography (XCT), Backscattered Electron Microscopy (BSE), and histomorphometry. At this point, all materials promoted new bone formation. Histological analysis showed no statistical difference among the different biomaterials (p > 0.05), but PCL-Bioglass scaffolds enhanced bone formation in the center of the scaffold more than the other types of materials. These materials show potential to promote bone regeneration in critical-sized defects on load-bearing sites.
AUTHOR
Title
Polysaccharide-infused bio-fabrication: Advancements in 3D bioprinting for tissue engineering and bone regeneration
[Abstract]
Year
2024
Journal/Proceedings
Materials Today Communications
Reftype
Groups
Abstract3D bioprinting, a subset of rapid prototyping technologies, facilitates the fabrication of biomaterials guided by computer-aided design models, layer-by-layer. This innovative approach, merging polymers, science, medicine, design, and mechanics, holds immense promise in the realm of organogenesis. Advancements in 3D bioprinting have revolutionized the landscape by enabling the fabrication of living tissues and organs, including skin, veins, ligaments, bones, heart, kidneys, and liver. Polysaccharides, long-chain carbohydrates abundantly found in nature, offer several advantageous properties for tissue engineering, including biodegradability, biocompatibility, and the ability to mimic the extracellular matrix. By incorporating polysaccharides such as alginate, chitosan, cellulose, xanthan and agarose into bio-ink formulations, researchers have been able to create bio-functional scaffolds that closely resemble the native tissue environment. Moreover, the rheological properties of polysaccharide-based bio-inks can be finely tuned to facilitate the extrusion process during 3D bioprinting, enabling the fabrication of complex, anatomically accurate structures with high fidelity. By incorporating bioactive molecules such as growth factors and osteogenic factors into polysaccharide-based bio-inks, researchers can create bio-functional scaffolds that promote cell adhesion, proliferation, and differentiation, ultimately facilitating the regeneration of functional bone tissue. This paper discusses patents associated with polysaccharide-infused bio-fabrication and evaluates the translational prospects of 3D bioprinted constructs, demonstrating their efficacy in remedying tissue defects and bone injuries. Additionally, it offers an analysis of the prevailing market dynamics and size concerning 3D bioprinting, taking into account factors such as technological advancements and regulatory frameworks. Overall, polysaccharide-infused bio-fabrication represents a versatile and promising approach for advancing the field of tissue engineering and bone regeneration.
AUTHOR
Title
Regulation of the immune microenvironment by pioglitazone-loaded polylactic glycolic acid nanosphere composite scaffolds to promote vascularization and bone regeneration
[Abstract]
Year
2024
Journal/Proceedings
Journal of Tissue Engineering
Reftype
DOI/URL
DOI
Groups
AbstractOsteogenesis is caused by multiple factors, and the inflammatory response, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), regeneration of blood vessels, and other factors must be considered in bone tissue engineering. To effectively repair bone defect, it is important to decrease excessive inflammation, enhance the differentiation of mesenchymal stem cells into osteoblasts, and stimulate angiogenesis. Herein, nano-attapulgite (ATP), polyvinyl alcohol (PVA), and gelatin (GEL) scaffolds were produced using 3D printing technology and pioglitazone (PIO)-containing polylactic acid–glycolic acid (PLGA) nanospheres were added. In both in vitro and in vivo studies, material scaffolds with PIO-loaded polylactic acid–glycolic acid nanospheres could reduce the inflammatory response by encouraging macrophage polarization from M1 to M2 and promoting the osteogenic differentiation of BMSCs by activating the BMP2/Smad/RUNX2 signal pathway to repair bone defects. The vascularization of human umbilical vein endothelial cells (HUVECs) through the PI3K/AKT/HIF1-/VEGF pathway was also encouraged. In vivo research using PIO-containing PLGA nanospheres revealed massive collagen deposition in skin models. These findings indicate a potentially effective scaffold for bone healing, when PLGA nanospheres—which contain the drug PIO—are combined with ATP/PVA/GEL scaffolds.
AUTHOR
Title
Reinforcing melt electrowritten elements with entangled multifibrillar strands for thin hydrogels with potential in bone resurfacing
[Abstract]
Year
2024
Journal/Proceedings
Materials & Design
Reftype
Groups
AbstractOsteonecrosis of the femoral head (ONFH) is a disease that affects young adults in their thirties to fifties, representing the progressive destruction of the hip bone caused by deficient vascularization. As the condition slowly leads to complete collapse of the femoral head, the conventional solution is total hip arthroplasty. Thin scaffolds consisting of fiber-reinforced hydrogels could be used to regenerate the affected bone surface, coupled with hip resurfacing for less invasive approaches. Melt electrowriting (MEW) was used to produce polycaprolactone (PCL) reinforcing elements for thin scaffolds, with four mesh densities and highly tunable mechanical properties. The influence of the MEW process parameters on the PCL filaments’ morphology was investigated using Design of Experiments to optimize their fabrication and obtain tailorable structures with entangled fiber morphology for increased contact surface with the hydrogel component. Uniaxial tensile tests were performed to investigate the difference in tensile properties of the entangled design versus the aligned counterparts, including the exploration of the mesh size effect. The microstructure and microstructural changes of the entangled meshes at uniaxial tensile deformation were explored using micro-computed tomography. Plasma treated meshes were embedded in gelatin methacryloyl/alginate hydrogels, developing reinforced composite scaffolds with potential for bone surface reconstruction.
AUTHOR
Title
Strontium-Modified porous attapulgite composite hydrogel scaffold with advanced angiogenic and osteogenic potential for bone defect repair
[Abstract]
Year
2024
Journal/Proceedings
Composites Part A: Applied Science and Manufacturing
Reftype
Groups
AbstractNano-attapulgite (nano-ATP) has shown potential in promoting mesenchymal stem cell (MSC) adhesion, growth and osteogenic gene expression. In this study, we investigated a 3D-bioprinted porous Sr-ATP (strontium-doped nano-ATP)/GelMA/chitosan composite hydrogel scaffold for bone regeneration. The experiment was divided into four groups based on the concentration of Sr-ATP: control (0%), 0.5%, 1.0% and 2.0%. The primary novelty of our research lies in the incorporation of Sr-ATP, which enhances the biological and mechanical properties of scaffolds. Additionally, we utilized a stable Pickering emulsion templating technique combined with 3D printing to fabricate the scaffold, ensuring a uniform and stable porous structure. The biological and mechanical properties of the scaffold were evaluated in vitro, and its potential to promote angiogenesis and osteogenesis was assessed in vivo using cranial defect model. Our results indicate that the scaffold presents a promising solution for bone formation in bone defects, demonstrating significant improvements in both angiogenesis and osteogenesis.
AUTHOR
Title
The effect of graphene and graphene oxide induced reactive oxygen species on polycaprolactone scaffolds for bone cancer applications
[Abstract]
Year
2024
Journal/Proceedings
Materials Today Bio
Reftype
Groups
AbstractBone cancer remains a critical healthcare problem. Among current clinical treatments, tumour resection is the most common strategy. It is usually effective but may present several limitations such as multiple operations, long hospital time, and the potential recurrence caused by the incomplete removal of cancer cells. To address these limitations, three-dimensional (3D) scaffolds fabricated through additive manufacturing have been researched for both bone cancer treatment and post-treatment rehabilitation. Polycaprolactone (PCL)-based scaffolds play an important role in bone regeneration, serving as a physical substrate to fill the defect site, recruiting cells, and promoting cell proliferation and differentiation, ultimately leading to the regeneration of the bone tissue without multiple surgical applications. Multiple advanced materials have been incorporated during the fabrication process to improve certain functions and/or modulate biological performances. Graphene-based nanomaterials, particularly graphene (G) and graphene oxide (GO), have been investigated both in vitro and in vivo, significantly improving the scaffold's physical, chemical, and biological properties, which strongly depend on the material type and concentration. A unique targeted inhibition effect on cancer cells was also discovered. However, limited research has been conducted on utilising graphene-based nanomaterials for both bone regeneration and bone cancer treatment, and there is no systematic study into the material- and dose-dependent effects, as well as the working mechanism on 3D scaffolds to realise these functions. This paper addresses these limitations by designing and fabricating PCL-based scaffolds containing different concentrations of G and GO and assessing their biological behaviour correlating it to the reactive oxygen species (ROS) release level. Results suggest that the ROS release from the scaffolds is a dominant mechanism that affects the biological behaviour of the scaffolds. ROS release also contributes to the inhibition effect on bone cancer due to healthy cells and cancer cells responding differently to ROS, and the osteogenesis results also present a certain correlation with ROS. These observations revealed a new route for realising bone cancer treatment and subsequent new bone regeneration, using a single dual-functional 3D scaffold.
AUTHOR
Title
Ti3C2Tx MXene-Decorated 3D-Printed Ceramic Scaffolds for Enhancing Osteogenesis by Spatiotemporally Orchestrating Inflammatory and Bone Repair Responses
[Abstract]
Year
2024
Journal/Proceedings
Advanced Science
Reftype
DOI/URL
DOI
Groups
AbstractAbstract Inflammatory responses play a central role in coordinating biomaterial-mediated tissue regeneration. However, precise modulation of dynamic variations in microenvironmental inflammation post-implantation remains challenging. In this study, the traditional β-tricalcium phosphate-based scaffold is remodeled via ultrathin MXene-Ti3C2 decoration and Zn2+/Sr2+ ion-substitution, endowing the scaffold with excellent reactive oxygen species-scavenging ability, near-infrared responsivity, and enhanced mechanical properties. The induction of mild hyperthermia around the implant via periodic near-infrared irradiation facilitates spatiotemporal regulation of inflammatory cytokines secreted by a spectrum of macrophage phenotypes. The process initially amplifies the pro-inflammatory response, then accelerates M1-to-M2 macrophage polarization transition, yielding a satisfactory pattern of osteo-immunomodulation during the natural bone healing process. Later, sustained release of Zn2+/Sr2+ ions with gradual degradation of the 3D scaffold maintains the favorable reparative M2-dominated immunological microenvironment that supports new bone mineralization. Precise temporal immunoregulation of the bone healing process by the intelligent 3D scaffold enhances bone regeneration in a rat cranial defect model. This strategy paves the way for the application of β-tricalcium phosphate-based materials to guide the dynamic inflammatory and bone tissue responses toward a favorable outcome, making clinical treatment more predictable and durable. The findings also demonstrate that near-infrared irradiation-derived mild hyperthermia is a promising method of immunomodulation.
AUTHOR
Title
{Micro-porous PLGA/β-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes}
[Abstract]
Year
2023
Journal/Proceedings
Regenerative Biomaterials
Reftype
DOI/URL
DOI
Groups
Abstract{The 3D printing process of fused deposition modelling (FDM) is an attractive fabrication approach to create tissue engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold’s surface upon solvent removal, without the need for further post processing. Our aim is to create and characterise porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) (PLGA) and osteoconductive β-tricalcium phosphate (β-TCP) with and without the addition of elastic thermoplastic polyurethane (TPU) prepared by solvent-based 3D-printing technique. Large scale regenerative scaffolds can be 3D-printed with adequate fidelity and show porosity at multiple levels analysed via micro-computer tomography, scanning electron microscopy and N2 sorption. Superior mechanical properties compared to a commercially available CaP ink are demonstrated in compression, bending, and screw pull out tests. Biological assessments including cell activity assay and live-dead staining prove the scaffold's cytocompatibility. Osteoconductive properties are demonstrated by performing an osteogenic differentiation assay with primary human bone marrow mesenchymal stromal cells. We propose a versatile fabrication process to create porous 3D-printed scaffolds with adequate mechanical stability and osteoconductivity, both important characteristics for segmental mandibular bone reconstruction.}
AUTHOR
Title
3D bio-printing for use as bone replacement tissues: A review of biomedical application
[Abstract]
Year
2023
Journal/Proceedings
Biomedical Engineering Advances
Reftype
AbstractSince we are able to use 3D printers, producing porous metal scaffolds become very easy. Contrary to usual methods, 3D printing of porous scaffolds is determined by a controllable and precise manufacturing process. That property allows us to form customized prefabricated implants for individual patients and make a regular pore distribution at the micro-scale as same as the structure of a bone, design of a structure like bone is very complicated because the pores of that structure must have enough space for cell attachment and proliferation. The reaction of cells and bone ingrowth can influence the effect of 3D printed porous metal scaffolds on bone ingrowth. This review introduces 3D printing techniques brief and focuses on the factors that potentially influence bone ingrowth into 3D printed porous metal scaffolds like materials, pore size, porosity, pore structure, surface modification, and mechanical properties. In each section, we described the mechanisms underlying cell-scaffold interactions in detail also there is a short introduction of clinical application of 3D printing. After all, there is a list that shows the most appropriate parameters for a flawless porous metal scaffold, and it is lead to finding a combination of these parameters that foretaste good bone ingrowth.
AUTHOR
Title
3D bioprinting of cell-laden nano-attapulgite/gelatin methacrylate composite hydrogel scaffolds for bone tissue repair
[Abstract]
Year
2023
Journal/Proceedings
Journal of Materials Science & Technology
Reftype
Groups
AbstractBone tissue engineering (BTE) has proven to be a promising strategy for bone defect repair. Due to its excellent biological properties, gelatin methacrylate (GelMA) hydrogels have been used as bioinks for 3D bioprinting in some BTE studies to produce scaffolds for bone regeneration. However, applications for load-bearing defects are limited by poor mechanical properties and a lack of bioactivity. In this study, 3D printing technology was used to create nano-attapulgite (nano-ATP)/GelMA composite hydrogels loaded into mouse bone mesenchymal stem cells (BMSCs) and mouse umbilical vein endothelial cells (MUVECs). The bioprintability, physicochemical properties, and mechanical properties were all thoroughly evaluated. Our findings showed that nano-ATP groups outperform the control group in terms of printability, indicating that nano-ATP is beneficial for printability. Additionally, after incorporation with nano-ATP, the mechanical strength of the composite hydrogels was significantly improved, resulting in adequate mechanical properties for bone regeneration. The presence of nano-ATP in the scaffolds has also been studied for cell-material interactions. The findings show that cells within the scaffold not only have high viability but also a clear proclivity to promote osteogenic differentiation of BMSCs. Besides, the MUVECs-loaded composite hydrogels demonstrated increased angiogenic activity. A cranial defect model was also developed to evaluate the bone repair capability of scaffolds loaded with rat BMSCs. According to histological analysis, cell-laden nano-ATP composite hydrogels can effectively improve bone regeneration and promote angiogenesis. This study demonstrated the potential of nano-ATP for bone tissue engineering, which should also increase the clinical practicality of nano-ATP.
AUTHOR
Title
3D double-reinforced graphene oxide – nanocellulose biomaterial inks for tissue engineered constructs
[Abstract]
Year
2023
Journal/Proceedings
RSC Adv.
Reftype
DOI/URL
DOI
Groups
AbstractThe advent of improved fabrication technologies{,} particularly 3D printing{,} has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However{,} inks made from natural polymers often fall short in terms of mechanical strength{,} stability{,} and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks{,} bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity{,} 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25{,} 0.5{,} and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting{,} the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.
AUTHOR
Title
3D-printed TCP-HA scaffolds delivering MicroRNA-302a-3p improve bone regeneration in a mouse calvarial model
[Abstract]
Year
2023
Journal/Proceedings
BDJ Open
Reftype
Limlawan2023
DOI/URL
DOI
Groups
AbstractTo demonstrate hydroxyapatite nanoparticles modified with cationic functional molecules. 3-aminopropyltriethoxysilane (HA-NPs-APTES) carrying microRNA-302a-3p (miR) in the 3D-printed tricalcium phosphate/Hydroxyapatite (TCP/HA) scaffold can increase healing of the critical-sized bone defect.
AUTHOR
Title
A dual osteoconductive-osteoprotective implantable device for vertical alveolar ridge augmentation
[Abstract]
Year
2023
Journal/Proceedings
Frontiers in Dental Medicine
Reftype
DOI/URL
DOI
Groups
AbstractRepair of large oral bone defects such as vertical alveolar ridge augmentation could benefit from the rapidly developing additive manufacturing technology used to create personalized osteoconductive devices made from porous tricalcium phosphate/hydroxyapatite (TCP/HA)-based bioceramics. These devices can be also used as hydrogel carriers to improve their osteogenic potential. However, the TCP/HA constructs are prone to brittle fracture, therefore their use in clinical situations is difficult. As a solution, we propose the protection of this osteoconductive multi-material (herein called “core”) with a shape-matched “cover” made from biocompatible poly-ɛ-caprolactone (PCL), which is a ductile, and thus more resistant polymeric material. In this report, we present a workflow starting from patient-specific medical scan in Digital Imaging and Communications in Medicine (DICOM) format files, up to the design and 3D printing of a hydrogel-loaded porous TCP/HA core and of its corresponding PCL cover. This cover could also facilitate the anchoring of the device to the patient's defect site via fixing screws. The large, linearly aligned pores in the TCP/HA bioceramic core, their sizes, and their filling with an alginate hydrogel were analyzed by micro-CT. Moreover, we created a finite element analysis (FEA) model of this dual-function device, which permits the simulation of its mechanical behavior in various anticipated clinical situations, as well as optimization before surgery. In conclusion, we designed and 3D-printed a novel, structurally complex multi-material osteoconductive-osteoprotective device with anticipated mechanical properties suitable for large-defect oral bone regeneration.
AUTHOR
Year
2023
Journal/Proceedings
Journal of Cartilage & Joint Preservation
Reftype
Groups
AbstractPurpose In patients suffering from unilateral osteoarthritis in the knee, an osteotomy can provide symptomatic relief and postpone the need for replacement of the joint. Nevertheless, open-wedge osteotomies (OWO) around the knee joint face several challenges like postoperative pain and bone non-union. In this study, the aim was to design, fabricate, and evaluate a gap-filling implant for OWO using an osteoinductive and degradable biomaterial. Methods Design of porous wedge-shaped implants was based on computed tomography (CT) scans of cadaveric legs. Implants were 3D printed using a magnesium strontium phosphate-polycaprolactone (MgPSr-PCL) biomaterial ink. Standardized scaffolds with different inter-fibre spacing (IFS) were mechanically characterized and osteoinductive properties of the biomaterial were assessed in vitro. Finally, human-sized implants with different heights (5 mm, 10 mm, 15 mm) were designed and fabricated for ex vivo implantation during three OWO procedures in human cadaveric legs. Results Implants printed with an interior of IFS-1.0 resulted in scaffolds that maintained top and bottom porosity, while the interior of the implant exhibited significant mechanical stability. Bone marrow concentrate and culture expanded mesenchymal stromal cells attached to the MgPSr-PCL material and proliferated over 21 days in culture. The production of osteogenic markers alkaline phosphatase activity, calcium, and osteocalcin was promoted in all culture conditions, independent of osteogenic induction medium. Finally, three OWO procedures were planned and fabricated wedges were implanted ex vivo during the procedures. A small fraction of one side of the wedges was resected to assure fit into the proximal biplanar osteotomy gap. Pre-planned wedge heights were maintained after implantation as measured by micro-CT. Conclusion To conclude, personalized implants for implantation in open-wedge osteotomies were successfully designed and manufactured. The implant material supported osteogenesis of MSCs and BMC in vitro and full-size implants were successfully implemented into the surgical procedure, without compromising pre-planned wedge height.
AUTHOR
Title
Accelerated Degradation of Poly-ε-caprolactone Composite Scaffolds for Large Bone Defects
[Abstract]
Year
2023
Journal/Proceedings
Polymers
Reftype
Groups
AbstractThis research investigates the accelerated hydrolytic degradation process of both anatomically designed bone scaffolds with a pore size gradient and a rectangular shape (biomimetically designed scaffolds or bone bricks). The effect of material composition is investigated considering poly-ε-caprolactone (PCL) as the main scaffold material, reinforced with ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (TCP) and bioglass at a concentration of 20 wt%. In the case of rectangular scaffolds, the effect of pore size (200 μm, 300 μm and 500 μm) is also investigated. The degradation process (accelerated degradation) was investigated during a period of 5 days in a sodium hydroxide (NaOH) medium. Degraded bone bricks and rectangular scaffolds were measured each day to evaluate the weight loss of the samples, which were also morphologically, thermally, chemically and mechanically assessed. The results show that the PCL/bioglass bone brick scaffolds exhibited faster degradation kinetics in comparison with the PCL, PCL/HA and PCL/TCP bone bricks. Furthermore, the degradation kinetics of rectangular scaffolds increased by increasing the pore size from 500 μm to 200 μm. The results also indicate that, for the same material composition, bone bricks degrade slower compared with rectangular scaffolds. The scanning electron microscopy (SEM) images show that the degradation process was faster on the external regions of the bone brick scaffolds (600 μm pore size) compared with the internal regions (200 μm pore size). The thermal gravimetric analysis (TGA) results show that the ceramic concentration remained constant throughout the degradation process, while differential scanning calorimetry (DSC) results show that all scaffolds exhibited a reduction in crystallinity (Xc), enthalpy (Δm) and melting temperature (Tm) throughout the degradation process, while the glass transition temperature (Tg) slightly increased. Finally, the compression results show that the mechanical properties decreased during the degradation process, with PCL/bioglass bone bricks and rectangular scaffolds presenting higher mechanical properties with the same design in comparison with the other materials.
AUTHOR
Title
Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks
[Abstract]
Year
2023
Journal/Proceedings
Materials
Reftype
Groups
AbstractOsteochondral (OC) disorders such as osteoarthritis (OA) damage joint cartilage and subchondral bone tissue. To understand the disease, facilitate drug screening, and advance therapeutic development, in vitro models of OC tissue are essential. This study aims to create a bioprinted OC miniature construct that replicates the cartilage and bone compartments. For this purpose, two hydrogels were selected: one composed of gelatin methacrylate (GelMA) blended with nanosized hydroxyapatite (nHAp) and the other consisting of tyramine-modified hyaluronic acid (THA) to mimic bone and cartilage tissue, respectively. We characterized these hydrogels using rheological testing and assessed their cytotoxicity with live-dead assays. Subsequently, human osteoblasts (hOBs) were encapsulated in GelMA-nHAp, while micropellet chondrocytes were incorporated into THA hydrogels for bioprinting the osteochondral construct. After one week of culture, successful OC tissue generation was confirmed through RT-PCR and histology. Notably, GelMA/nHAp hydrogels exhibited a significantly higher storage modulus (G′) compared to GelMA alone. Rheological temperature sweeps and printing tests determined an optimal printing temperature of 20 °C, which remained unaffected by the addition of nHAp. Cell encapsulation did not alter the storage modulus, as demonstrated by amplitude sweep tests, in either GelMA/nHAp or THA hydrogels. Cell viability assays using Ca-AM and EthD-1 staining revealed high cell viability in both GelMA/nHAp and THA hydrogels. Furthermore, RT-PCR and histological analysis confirmed the maintenance of osteogenic and chondrogenic properties in GelMA/nHAp and THA hydrogels, respectively. In conclusion, we have developed GelMA-nHAp and THA hydrogels to simulate bone and cartilage components, optimized 3D printing parameters, and ensured cell viability for bioprinting OC constructs.
AUTHOR
Title
Composite grafts made of polycaprolactone fiber mats and oil-based calcium phosphate cement pastes for the reconstruction of cranial and maxillofacial defects
[Abstract]
Year
2023
Journal/Proceedings
Clinical Oral Investigations
Reftype
Fuchs2023
DOI/URL
DOI
Groups
AbstractSynthetic bone substitutes which can be adapted preoperatively and patient specific may be helpful in various bony defects in the field of oral- and maxillofacial surgery. For this purpose, composite grafts made of self-setting and oil-based calcium phosphate cement (CPC) pastes, which were reinforced with 3D-printed polycaprolactone (PCL) fiber mats were manufactured.
AUTHOR
Title
Early In Vivo Osteogenic and Inflammatory Response of 3D Printed Polycaprolactone/Carbon Nanotube/Hydroxyapatite/Tricalcium Phosphate Composite Scaffolds
[Abstract]
Year
2023
Journal/Proceedings
Polymers
Reftype
Groups
AbstractThe development of advanced biomaterials and manufacturing processes to fabricate biologically and mechanically appropriate scaffolds for bone tissue is a significant challenge. Polycaprolactone (PCL) is a biocompatible and degradable polymer used in bone tissue engineering, but it lacks biofunctionalization. Bioceramics, such as hydroxyapatite (HA) and β tricalcium phosphate (β-TCP), which are similar chemically to native bone, can facilitate both osteointegration and osteoinduction whilst improving the biomechanics of a scaffold. Carbon nanotubes (CNTs) display exceptional electrical conductivity and mechanical properties. A major limitation is the understanding of how PCL-based scaffolds containing HA, TCP, and CNTs behave in vivo in a bone regeneration model. The objective of this study was to evaluate the use of three-dimensional (3D) printed PCL-based composite scaffolds containing CNTs, HA, and β-TCP during the initial osteogenic and inflammatory response phase in a critical bone defect rat model. Gene expression related to early osteogenesis, the inflammatory phase, and tissue formation was evaluated using quantitative real-time PCR (RT-qPCR). Tissue formation and mineralization were assessed by histomorphometry. The CNT+HA/TCP group presented higher expression of osteogenic genes after seven days. The CNT+HA and CNT+TCP groups stimulated higher gene expression for tissue formation and mineralization, and pro- and anti-inflammatory genes after 14 and 30 days. Moreover, the CNT+TCP and CNT+HA/TCP groups showed higher gene expressions related to M1 macrophages. The association of CNTs with ceramics at 10wt% (CNT+HA/TCP) showed lower expressions of inflammatory genes and higher osteogenic, presenting a positive impact and balanced cell signaling for early bone formation. The association of CNTs with both ceramics promoted a minor inflammatory response and faster bone tissue formation.
AUTHOR
Title
Electrical Stimulation Therapy and HA/TCP Composite Scaffolds Modulate the Wnt Pathways in Bone Regeneration of Critical-Sized Defects
[Abstract]
Year
2023
Journal/Proceedings
Bioengineering
Reftype
Groups
AbstractCritical bone defects are the most difficult challenges in the area of tissue repair. Polycaprolactone (PCL) scaffolds, associated with hydroxyapatite (HA) and tricalcium phosphate (TCP), are reported to have an enhanced bioactivity. Moreover, the use of electrical stimulation (ES) has overcome the lack of bioelectricity at the bone defect site and compensated the endogenous electrical signals. Such treatments could modulate cells and tissue signaling pathways. However, there is no study investigating the effects of ES and bioceramic composite scaffolds on bone tissue formation, particularly in the view of cell signaling pathway. This study aims to investigate the application of HA/TCP composite scaffolds and ES and their effects on the Wingless-related integration site (Wnt) pathway in critical bone repair. Critical bone defects (25 mm2) were performed in rats, which were divided into four groups: PCL, PCL + ES, HA/TCP and HA/TCP + ES. The scaffolds were grafted at the defect site and applied with the ES application twice a week using 10 µA of current for 5 min. Bone samples were collected for histomorphometry, immunohistochemistry and molecular analysis. At the Wnt canonical pathway, HA/TCP and HA/TCP + ES groups showed higher Wnt1 and β-catenin gene expression levels, especially HA/TCP. Moreover, HA/TCP + ES presented higher Runx2, Osterix and Bmp-2 levels. At the Wnt non-canonical pathway, HA/TCP group showed higher voltage-gated calcium channel (Vgcc), calmodulin-dependent protein kinase II, and Wnt5a genes expression, while HA/TCP + ES presented higher protein expression of VGCC and calmodulin (CaM) at the same period. The decrease in sclerostin and osteopontin genes expressions and the lower bone sialoprotein II in the HA/TCP + ES group may be related to the early bone remodeling. This study shows that the use of ES modulated the Wnt pathways and accelerated the osteogenesis with improved tissue maturation.
AUTHOR
Title
Fabrication of a three-dimensional printed gelatin/sodium alginate/nano-attapulgite composite polymer scaffold loaded with leonurine hydrochloride and its effects on osteogenesis and vascularization
[Abstract]
Year
2023
Journal/Proceedings
International Journal of Biological Macromolecules
Reftype
Groups
AbstractBone tissue engineering scaffolds have made significant progress in treating bone defects in recent decades. However, the lack of a vascular network within the scaffold limits bone formation after implantation in vivo. Recent research suggests that leonurine hydrochloride (LH) can promote healing in full-thickness cutaneous wounds by increasing vessel formation and collagen deposition. Gelatin and Sodium Alginate are both polymers. ATP is a magnesium silicate chain mineral. In this study, a Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel was used as the base material first, and the Gelatin/Sodium Alginate/Nano-Attapulgite composite polymer scaffold loaded with LH was then created using 3D printing technology. Finally, LH was grafted onto the base material by an amide reaction to construct a scaffold loaded with LH to achieve long-term LH release. When compared to pure polymer scaffolds, in vitro results showed that LH-loaded scaffolds promoted the differentiation of BMSCs into osteoblasts, as evidenced by increased expression of osteogenic key genes. The results of in vivo tissue staining revealed that the drug-loaded scaffold promoted both angiogenesis and bone formation. Collectively, these findings suggest that LH-loaded Gelatin/Sodium Alginate/Nano-Attapulgite composite hydrogel scaffolds are a potential therapeutic strategy and can assist bone regeneration.
AUTHOR
Title
Integrating Melt Electrowriting and Fused Deposition Modeling to Fabricate Hybrid Scaffolds Supportive of Accelerated Bone Regeneration
[Abstract]
Year
2023
Journal/Proceedings
Advanced Healthcare Materials
Reftype
DOI/URL
DOI
Groups
AbstractAbstract Emerging additive manufacturing (AM) strategies can enable the engineering of hierarchal scaffold structures for guiding tissue regeneration. Here, the advantages of two AM approaches, melt electrowriting (MEW) and fused deposition modelling (FDM), are leveraged and integrated to fabricate hybrid scaffolds for large bone defect healing. MEW is used to fabricate a microfibrous core to guide bone healing, while FDM is used to fabricate a stiff outer shell for mechanical support, with constructs being coated with pro-osteogenic calcium phosphate (CaP) nano-needles. Compared to MEW scaffolds alone, hybrid scaffolds prevent soft tissue collapse into the defect region and support increased vascularization and higher levels of new bone formation 12 weeks post-implantation. In an additional group, hybrid scaffolds are also functionalized with BMP2 via binding to the CaP coating, which further accelerates healing and facilitates the complete bridging of defects after 12 weeks. Histological analyses demonstrate that such scaffolds support the formation of well-defined annular bone, with an open medullary cavity, smooth periosteal surface, and no evidence of abnormal ectopic bone formation. These results demonstrate the potential of integrating different AM approaches for the development of regenerative biomaterials, and in particular, demonstrate the enhanced bone healing outcomes possible with hybrid MEW-FDM constructs.
AUTHOR
Year
2023
Journal/Proceedings
ACS Appl. Bio Mater.
Reftype
DOI/URL
DOI
Groups
AbstractOsteochondral tissue regeneration is quite difficult to achieve due to the complexity of its organization. In the design of these complex multilayer structures, a fabrication method, 3D printing, started to be employed, especially by using extrusion, stereolithography and inkjet printing approaches. In this paper, the designs are discussed including biphasic, triphasic, and gradient structures which aim to mimic the cartilage and the calcified cartilage and the whole osteochondral tissue closely. In the first section of the review paper, 3D printing of hydrogels including gelatin methacryloyl (GelMa), alginate, and polyethylene glycol diacrylate (PEGDA) are discussed. However, their physical and biological properties need to be augmented, and this generally is achieved by blending the hydrogel with other, more durable, less hydrophilic, polymers. These scaffolds are very suitable to carry growth factors, such as TGF-β1, to further stimulate chondrogenesis. The bone layer is mimicked by printing calcium phosphates (CaPs) or bioactive glasses together with the hydrogels or as a component of another polymer layer. The current research findings indicate that polyester (i.e. polycaprolactone (PCL), polylactic acid (PLA) and poly(lactide-co-glycolide) (PLGA)) reinforced hydrogels may more successfully mimic the complex structure of osteochondral tissue. Moreover, more recent printing methods such as melt electrowriting (MEW), are being used to integrate polyester fibers to enhance the mechanical properties of hydrogels. Additionally, polyester scaffolds that are 3D printed without hydrogels are discussed after the hydrogel-based scaffolds. In this review paper, the relevant studies are analyzed and discussed, and future work is recommended with support of tables of designed scaffolds. The outcome of the survey of the field is that 3D printing has significant potential to contribute to osteochondral tissue repair.
AUTHOR
Title
Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities
[Abstract]
Year
2023
Journal/Proceedings
Biomacromolecules
Reftype
DOI/URL
DOI
Groups
AbstractThe field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
AUTHOR
Title
Osteogenic potential of a 3D printed silver nanoparticle-based electroactive scaffold for bone tissue engineering using human Wharton{'}s jelly mesenchymal stem cells
[Abstract]
Year
2023
Journal/Proceedings
Mater. Adv.
Reftype
DOI/URL
DOI
Groups
AbstractThis study aims to perform biological assessments of an electroactive and anti-infection scaffold based on polycaprolactone/0.5 wt% silver nanoparticles (PCL/AgNPs) that was fabricated using a green synthesis approach followed by a 3D printing method without utilization of any toxic solvents{,} which has not been explored previously. For this purpose{,} human Wharton{'}s jelly mesenchymal stem cells (hWJ-MSCs) were used as a cell source to explore the biocompatibility and the ability to induce the osteogenesis process on the fabricated PCL and PCL/AgNPs scaffolds. Scanning electron microscopy (SEM){,} confocal microscopy and an alamar blue assay up to day 14 revealed that the PCL/AgNPs scaffolds have better cell attachment{,} penetration and proliferation than the PCL scaffolds. A gene expression study up to day 21 using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed that the PCL/AgNPs scaffolds have better osteogenic differentiation at the gene level than the PCL scaffolds. This is indicated by the 2–3 fold greater expression of runt-related transcription factor 2 (RUNX2){,} collagen type I alpha 1 chain (COL1A1){,} and osteopontin (OPN) than the PCL scaffold. A protein expression study up to day 21 using immunocytochemistry and detection of alkaline phosphatase (ALP) revealed that the PCL/AgNPs scaffolds have better osteogenic differentiation at the protein level than the PCL scaffolds. This is shown by the observed collagen type I and osteopontin protein{,} and ALP activity at day 21 of PCL/AgNPs scaffolds (768 U L−1) which is 1.3 times higher than that of the PCL scaffolds (578 U L−1). These biological assessments showed that the combination of a green synthesis approach to prepare AgNPs and solvent-free 3D printing methods to fabricate the PCL/AgNPs scaffolds led to better biocompatibility and ability to induce the osteogenesis process{,} which is attractive for bone tissue engineering and regenerative medicine applications.
AUTHOR
Title
Study on 3D-Printed Emodin/Nano-Hydroxyapatite Scaffolds Promoting Bone Regeneration by Supporting Osteoblast Proliferation and Macrophage M2 Polarization
[Abstract]
Year
2023
Journal/Proceedings
ACS Appl. Polym. Mater.
Reftype
DOI/URL
DOI
Groups
AbstractThe treatment of bone defects caused by diseases, trauma, or tumor has always been a great clinical challenge. Implantation of bone biomaterials into bone defect areas is an effective method for bone injury repair. In this study, we used three-dimensional (3D) printing technology to prepare nano-hydroxyapatite (nHA)/sodium alginate (SA)/gelatin (Gel) hydrogel scaffolds loaded with different ratios (0, 0.13, 0.26, 0.39, 0.53, and 0.79‰) of emodin (EM) (EM/nHA/SA/Gel). Scanning electron microscopy showed that the scaffolds had a smooth surface without fracture and nHA was evenly distributed on the surface. The cell proliferation and migration results showed that the 0.39‰ EM group, in particular, could significantly promote the proliferation and migration of mouse embryonic osteoblast precursor (MC3T3-E1) cells and significantly increase the mRNA expression of osteogenic differentiation-related genes (bone morphogenetic protein/BMP-2, BMP-9, osteocalcin). In addition, the 0.39‰ EM group exhibited the best effect on osteogenic differentiation-related proteins (alkaline phosphatase, Runx 2, OSX). The expression of M2 polarization-related genes (arginase-1, CD206) also significantly increased after the treatment with the 0.39‰ EM group. Micro-CT showed that in the rat skull defect model, the EM/nHA/SA/Gel scaffold group significantly promoted bone regeneration after being implanted into the skull for 30 days. Our results indicate that the EM/nHA/SA/Gel hydrogel scaffolds can not only directly promote the proliferation and differentiation of osteoblasts but also indirectly promote osteogenic differentiation by supporting M2 polarization of macrophages. EM/nHA/SA/Gel hydrogel scaffolds are potential bone tissue engineering materials for bone regeneration.
AUTHOR
Title
Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation
[Abstract]
Year
2023
Journal/Proceedings
ACS Appl. Mater. Interfaces
Reftype
DOI/URL
DOI
Groups
AbstractEnhancing osteogenesis via modulating immune cells is emerging as a new approach to address the current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells during bone formation. Moreover, biomaterial scaffold-based approaches to effectively modulate this crosstalk to favor bone healing are also lacking. This study is the first to investigate the interactions between macrophages and mesenchymal stem cells (MSCs) in co-cultures with the sustained release of an anti-inflammatory and pro-osteogenesis drug (dexamethasone) from three-dimensional (3D)-printed scaffolds. We successfully achieved the sustained release of dexamethasone from polycaprolactone (PCL) by adding the excipient-sucrose acetate isobutyrate (SAIB). Dexamethasone was released over 35 days in the 17-163 nM range. The osteogenic differentiation of MSCs was enhanced by M1 macrophages at early time points. The late-stage mineralization was dominated by dexamethasone, with little contribution from the macrophages. Besides confirming BMP-2 whose secretion was promoted by both dexamethasone and M1 macrophages as a soluble mediator for enhanced osteogenesis, IL-6 was found to be a possible new soluble factor that mediated osteogenesis in macrophage-MSC co-cultures. The phenotype switching from M1 to M2 was drastically enhanced by the scaffold-released dexamethasone but only marginally by the co-cultured MSCs. Our results offer new insight into macrophage-MSC crosstalk and demonstrate the potential of using drug-release scaffolds to both modulate inflammation and enhance bone regeneration.
AUTHOR
Title
β-TCP from 3D-printed composite scaffolds acts as an effective phosphate source during osteogenic differentiation of human mesenchymal stromal cells
[Abstract]
Year
2023
Journal/Proceedings
Frontiers in Cell and Developmental Biology
Reftype
DOI/URL
DOI
Groups
AbstractIntroduction: Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are often combined with calcium phosphate (CaP)—based 3D-printed scaffolds with the goal of creating a bone substitute that can repair segmental bone defects. In vitro, the induction of osteogenic differentiation traditionally requires, among other supplements, the addition of β-glycerophosphate (BGP), which acts as a phosphate source. The aim of this study is to investigate whether phosphate contained within the 3D-printed scaffolds can effectively be used as a phosphate source during hBM-MSC in vitro osteogenesis.Methods: hBM-MSCs are cultured on 3D-printed discs composed of poly (lactic-co-glycolic acid) (PLGA) and β-tricalcium phosphate (β-TCP) for 28 days under osteogenic conditions, with and without the supplementation of BGP. The effects of BGP removal on various cellular parameters, including cell metabolic activity, alkaline phosphatase (ALP) presence and activity, proliferation, osteogenic gene expression, levels of free phosphate in the media and mineralisation, are assessed.Results: The removal of exogenous BGP increases cell metabolic activity, ALP activity, proliferation, and gene expression of matrix-related (COL1A1, IBSP, SPP1), transcriptional (SP7, RUNX2/SOX9, PPARγ) and phosphate-related (ALPL, ENPP1, ANKH, PHOSPHO1) markers in a donor dependent manner. BGP removal leads to decreased free phosphate concentration in the media and maintained of mineral deposition staining.Discussion: Our findings demonstrate the detrimental impact of exogenous BGP on hBM-MSCs cultured on a phosphate-based material and propose β-TCP embedded within 3D-printed scaffold as a sufficient phosphate source for hBM-MSCs during osteogenesis. The presented study provides novel insights into the interaction of hBM-MSCs with 3D-printed CaP based materials, an essential aspect for the advancement of bone tissue engineering strategies aimed at repairing segmental defects.
AUTHOR
Year
2022
Journal/Proceedings
Acta Biomaterialia
Reftype
Groups
AbstractDamaged or diseased bone can be treated using autografts or a range of different bone grafting biomaterials, however limitations with such approaches has motivated increased interest in developmentally inspired bone tissue engineering (BTE) strategies that seek to recapitulate the process of endochondral ossification (EO) as a means of regenerating critically sized defects. The clinical translation of such strategies will require the engineering of scaled-up, geometrically defined hypertrophic cartilage grafts that can be rapidly vascularised and remodelled into bone in mechanically challenging defect environments. The goal of this study was to 3D bioprint mechanically reinforced cartilaginous templates and to assess their capacity to regenerate critically sized femoral bone defects. Human mesenchymal stem/stromal cells (hMSCs) were incorporated into fibrin based bioinks and bioprinted into polycaprolactone (PCL) frameworks to produce mechanically reinforced constructs. Chondrogenic priming of such hMSC laden constructs was required to support robust vascularisation and graft mineralisation in vivo following their subcutaneous implantation into nude mice. With a view towards maximising their potential to support endochondral bone regeneration, we next explored different in vitro culture regimes to produce chondrogenic and early hypertrophic engineered grafts. Following their implantation into femoral bone defects within transiently immunosuppressed rats, such bioprinted constructs were rapidly remodelled into bone in vivo, with early hypertrophic constructs supporting higher levels of vascularisation and bone formation compared to the chondrogenic constructs. Such early hypertrophic bioprinted constructs also supported higher levels of vascularisation and spatially distinct patterns of new formation compared to BMP-2 loaded collagen scaffolds (here used as a positive control). In conclusion, this study demonstrates that fibrin based bioinks support chondrogenesis of hMSCs in vitro, which enables the bioprinting of mechanically reinforced hypertrophic cartilaginous templates capable of supporting large bone defect regeneration. These results support the use of 3D bioprinting as a strategy to scale-up the engineering of developmentally inspired templates for BTE. Statement of significance Despite the promise of developmentally inspired tissue engineering strategies for bone regeneration, there are still challenges that need to be addressed to enable clinical translation. This work reports the development and assessment (in vitro and in vivo) of a 3D bioprinting strategy to engineer mechanically-reinforced cartilaginous templates for large bone defect regeneration using human MSCs. Using distinct in vitro priming protocols, it was possible to generate cartilage grafts with altered phenotypes. More hypertrophic grafts, engineered in vitro using TGF-β3 and BMP-2, supported higher levels of blood vessel infiltration and accelerated bone regeneration in vivo. This study also identifies some of the advantages and disadvantages of such endochondral bone TE strategies over the direct delivery of BMP-2 from collagen-based scaffolds.
AUTHOR
Title
3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration
[Abstract]
Year
2022
Journal/Proceedings
International Journal of Molecular Sciences
Reftype
Groups
AbstractThe main objective was to produce 3D printable hydrogels based on GelMA and hydroxyapatite doped with cerium ions with potential application in bone regeneration. The first part of the study regards the substitution of Ca2+ ions from hydroxyapatite structure with cerium ions (Ca10-xCex(PO4)6(OH)2, xCe = 0.1, 0.3, 0.5). The second part followed the selection of the optimal concentration of HAp doped, which will ensure GelMA-based scaffolds with good biocompatibility, viability and cell proliferation. The third part aimed to select the optimal concentrations of GelMA for the 3D printing process (20%, 30% and 35%). In vitro biological assessment presented the highest level of cell viability and proliferation potency of GelMA-HC5 composites, along with a low cytotoxic potential, highlighting the beneficial effects of cerium on cell growth, also supported by Live/Dead results. According to the 3D printing experiments, the 30% GelMA enriched with HC5 was able to generate 3D scaffolds with high structural integrity and homogeneity, showing the highest suitability for the 3D printing process. The osteogenic differentiation experiments confirmed the ability of 30% GelMA-3% HC5 scaffold to support and efficiently maintain the osteogenesis process. Based on the results, 30% GelMA-3% HC5 3D printed scaffolds could be considered as biomaterials with suitable characteristics for application in bone tissue engineering.
AUTHOR
Title
3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration
[Abstract]
Year
2022
Journal/Proceedings
Journal of Biomaterials Applications
Reftype
DOI/URL
DOI
Groups
AbstractTissue-engineered bone material is one of the effective methods to repair bone defects, but the application is restricted in clinical because of the lack of excellent scaffolds that can induce bone regeneration as well as the difficulty in making scaffolds with personalized structures. 3D printing is an emerging technology that can fabricate bespoke 3D scaffolds with precise structure. However, it is challenging to develop the scaffold materials with excellent printability, osteogenesis ability, and mechanical strength. In this study, graphene oxide (GO), attapulgite (ATP), type I collagen (Col I) and polyvinyl alcohol were used as raw materials to prepare composite scaffolds via 3D bioprinting. The composite materials showed excellent printability. The microcosmic architecture and properties was characterized by scanning electron microscopy, Fourier transform infrared and thermal gravimetric analyzer, respectively. To verify the biocompatibility of the scaffolds, the viability, proliferation and osteogenic differentiation of Bone Marrow Stromal Cells (BMSCs) on the scaffolds were assessed by CCK-8, Live/Dead staining and Real-time PCR in vitro. The composited scaffolds were then implanted into the skull defects on rat for bone regeneration. Hematoxylin-eosin staining, Masson staining and immunohistochemistry staining were carried out in vivo to evaluate the regeneration of bone tissue.The results showed that GO/ATP/COL scaffolds have been demonstrated to possess controlled porosity, water absorption, biodegradability and good apatite-mineralization ability. The scaffold consisting of 0.5% GO/ATP/COL have excellent biocompatibility and was able to promote the growth, proliferation and osteogenic differentiation of mouse BMSCs in vitro. Furthermore, the 0.5% GO/ATP/COL scaffolds were also able to promote bone regeneration of in rat skull defects. Our results illustrated that the 3D printed GO/ATP/COL composite scaffolds have good mechanical properties, excellent cytocompatibility for enhanced mouse BMSCs adhesion, proliferation, and osteogenic differentiation. All these advantages made it potential as a promising biomaterial for osteogenic reconstruction.
AUTHOR
Title
3D Printed Composite Scaffolds of GelMA and Hydroxyapatite Nanopowders Doped with Mg/Zn Ions to Evaluate the Expression of Genes and Proteins of Osteogenic Markers
[Abstract]
Year
2022
Journal/Proceedings
Nanomaterials
Reftype
Groups
AbstractAs bone diseases and defects are constantly increasing, the improvement of bone regeneration techniques is constantly evolving. The main purpose of this scientific study was to obtain and investigate biomaterials that can be used in tissue engineering. In this respect, nanocomposite inks of GelMA modified with hydroxyapatite (HA) substituted with Mg and Zn were developed. Using a 3D bioprinting technique, scaffolds with varying shapes and dimensions were obtained. The following analyses were used in order to study the nanocomposite materials and scaffolds obtained by the 3D printing technique: Fourier transform infrared spectrometry and X-ray diffraction (XRD), scanning electron microscopy (SEM), and micro-computed tomography (Micro-CT). The swelling and dissolvability of each scaffold were also studied. Biological studies, osteopontin (OPN), and osterix (OSX) gene expression evaluations were confirmed at the protein levels, using immunofluorescence coupled with confocal microscopy. These findings suggest the positive effect of magnesium and zinc on the osteogenic differentiation process. OSX fluorescent staining also confirmed the capacity of GelMA-HM5 and GelMA-HZ5 to support osteogenesis, especially of the magnesium enriched scaffold.
AUTHOR
Title
3D printing of complex architected metamaterial structures by simple material extrusion for bone tissue engineering
[Abstract]
Year
2022
Journal/Proceedings
Materials Today Communications
Reftype