REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Bone Tissue Engineering
Matching entries: 58 /58
All Groups
AUTHOR Dubey, Nileshkumar and Ferreira, Jessica A. and Daghrery, Arwa and Aytac, Zeynep and Malda, Jos and Bhaduri, Sarit B. and Bottino, Marco C.
Title Highly Tunable Bioactive Fiber-Reinforced Hydrogel for Guided Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
One of the most damaging pathologies that affects the health of both soft and hard tissues around the tooth is periodontitis. Clinically, periodontal tissue destruction has been managed by an integrated approach involving elimination of injured tissues followed by regenerative strategies with bone substitutes and/or barrier membranes. Regrettably, a barrier membrane with predictable mechanical integrity and multifunctional therapeutic features has yet to be established. Herein, we report a fiber-reinforced hydrogel with unprecedented tunability in terms of mechanical competence and therapeutic features by integration of highly porous poly(ε-caprolactone) fibrous mesh(es) with well-controlled 3D architecture into bioactive amorphous magnesium phosphate-laden gelatin methacryloyl hydrogels. The presence of amorphous magnesium phosphate and PCL mesh in the hydrogel can control the mechanical properties and improve the osteogenic ability, opening a tremendous opportunity in guided bone regeneration (GBR). Results demonstrate that the presence of PCL meshes fabricated via melt electrowriting can delay hydrogel degradation preventing soft tissue invasion and providing the mechanical barrier to allow time for slower migrating progenitor cells to participate in bone regeneration due to their ability to differentiate into bone-forming cells. Altogether, our approach offers a platform technology for the development of the next-generation of GBR membranes with tunable mechanical and therapeutic properties to amplify bone regeneration in compromised sites.
AUTHOR Daly, Andrew C. and Kelly, Daniel J.
Title Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers [Abstract]
Year 2019
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Successful tissue engineering requires the generation of human scale implants that mimic the structure, composition and mechanical properties of native tissues. Here, we report a novel biofabrication strategy that enables the engineering of structurally organised tissues by guiding the growth of cellular spheroids within arrays of 3D printed polymeric microchambers. With the goal of engineering stratified articular cartilage, inkjet bioprinting was used to deposit defined numbers of mesenchymal stromal cells (MSCs) and chondrocytes into pre-printed microchambers. These jetted cell suspensions rapidly underwent condensation within the hydrophobic microchambers, leading to the formation of organised arrays of cellular spheroids. The microchambers were also designed to provide boundary conditions to these spheroids, guiding their growth and eventual fusion, leading to the development of stratified cartilage tissue with a depth-dependant collagen fiber architecture that mimicked the structure of native articular cartilage. Furthermore, the composition and biomechanical properties of the bioprinted cartilage was also comparable to the native tissue. Using multi-tool biofabrication, we were also able to engineer anatomically accurate, human scale, osteochondral templates by printing this microchamber system on top of a hypertrophic cartilage region designed to support endochondral bone formation and then maintaining the entire construct in long-term bioreactor culture to enhance tissue development. This bioprinting strategy provides a versatile and scalable approach to engineer structurally organised cartilage tissues for joint resurfacing applications.
AUTHOR Gonzalez-Fernandez, T. and Rathan, S. and Hobbs, C. and Pitacco, P. and Freeman, F. E. and Cunniffe, G. M. and Dunne, N. J. and McCarthy, H. O. and Nicolosi, V. and O'Brien, F. J. and Kelly, D. J.
Title Pore-forming bioinks to enable Spatio-temporally defined gene delivery in bioprinted tissues [Abstract]
Year 2019
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
The regeneration of complex tissues and organs remains a major clinical challenge. With a view towards bioprinting such tissues, we developed a new class of pore-forming bioink to spatially and temporally control the presentation of therapeutic genes within bioprinted tissues. By blending sacrificial and stable hydrogels, we were able to produce bioinks whose porosity increased with time following printing. When combined with amphipathic peptide-based plasmid DNA delivery, these bioinks supported enhanced non-viral gene transfer to stem cells in vitro. By modulating the porosity of these bioinks, it was possible to direct either rapid and transient (pore-forming bioinks), or slower and more sustained (solid bioinks) transfection of host or transplanted cells in vivo. To demonstrate the utility of these bioinks for the bioprinting of spatially complex tissues, they were next used to zonally position stem cells and plasmids encoding for either osteogenic (BMP2) or chondrogenic (combination of TGF-β3, BMP2 and SOX9) genes within networks of 3D printed thermoplastic fibers to produce mechanically reinforced, gene activated constructs. In vivo, these bioprinted tissues supported the development of a vascularised, bony tissue overlaid by a layer of stable cartilage. When combined with multiple-tool biofabrication strategies, these gene activated bioinks can enable the bioprinting of a wide range of spatially complex tissues.
AUTHOR Cunniffe, Gráinne and Gonzalez-Fernandez, Tomas and Daly, Andrew and Nelson Sathy, Binulal and Jeon, Oju and Alsberg, Eben and J. Kelly, Daniel
Title Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering [Abstract]
Year 2017
Journal/Proceedings Tissue Engineering Part A
Reftype
DOI/URL DOI
Abstract
Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-g-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bonemarrow-derived mesenchymal stemcells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization andmineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.
AUTHOR Freeman, Fiona E. and Pitacco, Pierluca and van Dommelen, Lieke H. A. and Nulty, Jessica and Browe, David C. and Shin, Jung-Youn and Alsberg, Eben and Kelly, Daniel J.
Title 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration [Abstract]
Year 2020
Journal/Proceedings Science Advances
Reftype
DOI/URL URL DOI
Abstract
Therapeutic growth factor delivery typically requires supraphysiological dosages, which can cause undesirable off-target effects. The aim of this study was to 3D bioprint implants containing spatiotemporally defined patterns of growth factors optimized for coupled angiogenesis and osteogenesis. Using nanoparticle functionalized bioinks, it was possible to print implants with distinct growth factor patterns and release profiles spanning from days to weeks. The extent of angiogenesis in vivo depended on the spatial presentation of vascular endothelial growth factor (VEGF). Higher levels of vessel invasion were observed in implants containing a spatial gradient of VEGF compared to those homogenously loaded with the same total amount of protein. Printed implants containing a gradient of VEGF, coupled with spatially defined BMP-2 localization and release kinetics, accelerated large bone defect healing with little heterotopic bone formation. This demonstrates the potential of growth factor printing, a putative point of care therapy, for tightly controlled tissue regeneration.
AUTHOR Daly, Andrew C. and Pitacco, Pierluca and Nulty, Jessica and Cunniffe, Gráinne M. and Kelly, Daniel J.
Title 3D printed microchannel networks to direct vascularisation during endochondral bone repair [Abstract]
Year 2018
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.
AUTHOR Nulty, Jessica and Freeman, Fiona E. and Browe, David C. and Burdis, Ross and Ahern, Daniel P. and Pitacco, Pierluca and Lee, Yu Bin and Alsberg, Eben and Kelly, Daniel J.
Title 3D Bioprinting of prevascularised implants for the repair of critically-sized bone defects [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
For 3D bioprinted tissues to be scaled-up to clinically relevant sizes, effective prevascularisation strategies are required to provide the necessary nutrients for normal metabolism and to remove associated waste by-products. The aim of this study was to develop a bioprinting strategy to engineer prevascularised tissues in vitro and to investigate the capacity of such constructs to enhance the vascularisation and regeneration of large bone defects in vivo. From a screen of different bioinks, a fibrin-based hydrogel was found to best support human umbilical vein endothelial cell (HUVEC) sprouting and the establishment of a microvessel network. When this bioink was combined with HUVECs and supporting human bone marrow stem/stromal cells (hBMSCs), these microvessel networks persisted in vitro. Furthermore, only bioprinted tissues containing both HUVECs and hBMSCs, that were first allowed to mature in vitro, supported robust blood vessel development in vivo. To assess the therapeutic utility of this bioprinting strategy, these bioinks were used to prevascularise 3D printed polycaprolactone (PCL) scaffolds, which were subsequently implanted into critically-sized femoral bone defects in rats. Microcomputed tomography (µCT) angiography revealed increased levels of vascularisation in vivo, which correlated with higher levels of new bone formation. Such prevascularised constructs could be used to enhance the vascularisation of a range of large tissue defects, forming the basis of multiple new bioprinted therapeutics. Statement of Significance This paper demonstrates a versatile 3D bioprinting technique to improve the vascularisation of tissue engineered constructs and further demonstrates how this method can be incorporated into a bone tissue engineering strategy to improve vascularisation in a rat femoral defect model.
AUTHOR Vyas, Cian and Zhang, Jun and Øvrebø, Øystein and Huang, Boyang and Roberts, Iwan and Setty, Mohan and Allardyce, Benjamin and Haugen, Håvard and Rajkhowa, Rangam and Bartolo, Paulo
Title 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Polycaprolactone (PCL) scaffolds have been widely investigated for tissue engineering applications, however, they exhibit poor cell adhesion and mechanical properties. Subsequently, PCL composites have been produced to improve the material properties. This study utilises a natural material, Bombyx mori silk microparticles (SMP) prepared by milling silk fibre, to produce a composite to enhance the scaffolds properties. Silk is biocompatible and biodegradable with excellent mechanical properties. However, there are no studies using SMPs as a reinforcing agent in a 3D printed thermoplastic polymer scaffold. PCL/SMP (10, 20, 30 wt%) composites were prepared by melt blending. Rheological analysis showed that SMP loading increased the shear thinning and storage modulus of the material. Scaffolds were fabricated using a screw-assisted extrusion-based additive manufacturing system. Scanning electron microscopy and X-ray microtomography was used to determine scaffold morphology. The scaffolds had high interconnectivity with regular printed fibres and pore morphologies within the designed parameters. Compressive mechanical testing showed that the addition of SMP significantly improved the compressive Young's modulus of the scaffolds. The scaffolds were more hydrophobic with the inclusion of SMP which was linked to a decrease in total protein adsorption. Cell behaviour was assessed using human adipose derived mesenchymal stem cells. A cytotoxic effect was observed at higher particle loading (30 wt%) after 7 days of culture. By day 21, 10 wt% loading showed significantly higher cell metabolic activity and proliferation, high cell viability, and cell migration throughout the scaffold. Calcium mineral deposition was observed on the scaffolds during cell culture. Large calcium mineral deposits were observed at 30 wt% and smaller calcium deposits were observed at 10 wt%. This study demonstrates that SMPs incorporated into a PCL scaffold provided effective mechanical reinforcement, improved the rate of degradation, and increased cell proliferation, demonstrating potential suitability for bone tissue engineering applications.
AUTHOR Chelsea Twohig and Mari Helsinga and Amin Mansoorifar and Avathamsa Athirasala and Anthony Tahayeri and Cristiane Miranda França and Silvia Amaya Pajares and Reyan Abdelmoniem and Susanne Scherrer and Stéphane Durual and Jack Ferracane and Luiz E. Bertassoni
Title A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
A functional vascular supply is a key component of any large-scale tissue, providing support for the metabolic needs of tissue-remodeling cells. Although well-studied strategies exist to fabricate biomimetic scaffolds for bone regeneration, success rates for regeneration in larger defects can be improved by engineering microvascular capillaries within the scaffolds to enhance oxygen and nutrient supply to the core of the engineered tissue as it grows. Even though the role of calcium and phosphate has been well understood to enhance osteogenesis, it remains unclear whether calcium and phosphate may have a detrimental effect on the vasculogenic and angiogenic potential of endothelial cells cultured on 3D printed bone scaffolds. In this study, we presented a novel dual-ink bioprinting method to create vasculature interwoven inside CaP bone constructs. In this method, strands of a CaP ink and a sacrificial template material was used to form scaffolds containing CaP fibers and microchannels seeded with vascular endothelial and mesenchymal stem cells (MSCs) within a photo-crosslinkable gelatin methacryloyl (GelMA) hydrogel material. Our results show similar morphology of growing vessels in the presence of CaP bioink, and no significant difference in endothelial cell sprouting was found. Furthermore, our initial results showed the differentiation of hMSCs into pericytes in the presence of CaP ink. These results indicate the feasibility of creating vascularized bone scaffolds, which can be used for enhancing vascular formation in the core of bone scaffolds.
AUTHOR Fisch, Philipp and Broguiere, Nicolas and Finkielsztein, Sergio and Linder, Thomas and Zenobi-Wong, Marcy
Title Bioprinting of Cartilaginous Auricular Constructs Utilizing an Enzymatically Crosslinkable Bioink [Abstract]
Year 2021
Journal/Proceedings Advanced Functional Materials
Reftype
DOI/URL DOI
Abstract
Abstract Bioprinting of functional tissues could overcome tissue shortages and allow a more rapid response for treatments. However, despite recent progress in bioprinting, and its outstanding ability to position cells and biomaterials in a precise 3D manner, its success has been limited, due to insufficient maturation of constructs into functional tissue. Here, a novel calcium-triggered enzymatic crosslinking (CTEC) mechanism for bioinks based on the activation cascade of Factor XIII is presented and utilized for the biofabrication of cartilaginous constructs. Hyaluronan transglutaminase (HA-TG), an enzymatically crosslinkable material, has shown excellent characteristics for chondrogenesis and builds the basis of the CTEC bioink. The bioink supports tissue maturation with neocartilage formation and stiffening of constructs up to 400 kPa. Bioprinted constructs remain stable in vivo for 24 weeks and bioprinted auricular constructs transform into cartilaginous grafts. A major limitation of the current study is the deposition of collagen I, indicating the maturation toward fibrocartilage rather than elastic cartilage. Shifting the maturation process toward elastic cartilage will therefore be essential in order for the developed bioinks to offer a novel tissue engineered treatment for microtia patients. CTEC bioprinting furthermore opens up use of enzymatically crosslinkable biopolymers and their modularity to support a multitude of tissues.
AUTHOR Bagnol, Romain and Sprecher, Christoph and Peroglio, Marianna and Chevalier, Jerome and Mahou, Redouan and Büchler, Philippe and Richards, Geoff and Eglin, David
Title Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties [Abstract]
Year 2021
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Micro-extrusion-based 3D printing of complex geometrical and porous calcium phosphate (CaP) can improve treatment of bone defects through the production of personalized bone substitutes. However, achieving printing and post-printing shape stabilities for the efficient fabrication and application of rapid hardening protocol are still challenging. In this work, the coaxial printing of a self-setting CaP cement with water and ethanol mixtures aiming to increase the ink yield stress upon extrusion and the stability of fabricated structures was explored. Printing height of overhang structure was doubled when aqueous solvents were used and a 2 log increase of the stiffness was achieved post-printing. A standard and fast steam sterilization protocol applied as hardening step on the coaxial printed CaP cement (CPC) ink resulted in constructs with 4 to 5 times higher compressive moduli in comparison to extrusion process in the absence of solvent. This improved mechanical performance is likely due to rapid CPC setting, preventing cracks formation during hardening process. Thus, coaxial micro-extrusion-based 3D printing of a CPC ink with aqueous solvent enhances printability and allows the use of the widespread steam sterilization cycle as a standalone post-processing technique for production of 3D printed personalized CaP bone substitutes. Statement of Significance Coaxial micro-extrusion-based 3D printing of a self-setting CaP cement with water:ethanol mixtures increased the ink yield stress upon extrusion and the stability of fabricated structures. Printing height of overhang structure was doubled when aqueous solvents were used, and a 2 orders of magnitude log increase of the stiffness was achieved post-printing. A fast hardening step consisting of a standard steam sterilization was applied. Four to 5 times higher compressive moduli was obtained for hardened coaxially printed constructs. This improved mechanical performance is likely due to rapid CPC setting in the coaxial printing, preventing cracks formation during hardening process.
AUTHOR Fenelon, Mathilde and Etchebarne, Marion and Siadous, Robin and Grémare, Agathe and Durand, Marlène and Sentilhes, Loic and Catros, Sylvain and Gindraux, Florelle and L'Heureux, Nicolas and Fricain, Jean-Christophe
Title Comparison of amniotic membrane versus the induced membrane for bone regeneration in long bone segmental defects using calcium phosphate cement loaded with BMP-2 [Abstract]
Year 2021
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Thanks to its biological properties, the human amniotic membrane (HAM) combined with a bone substitute could be a single-step surgical alternative to the two-step Masquelet induced membrane (IM) technique for regeneration of critical bone defects. However, no study has directly compared these two membranes. We first designed a 3D-printed scaffold using calcium phosphate cement (CPC). We assessed its suitability in vitro to support human bone marrow mesenchymal stromal cells (hBMSCs) attachment and osteodifferentiation. We then performed a rat femoral critical size defect to compare the two-step IM technique with a single-step approach using the HAM. Five conditions were compared. Group 1 was left empty. Group 2 received the CPC scaffold loaded with rh-BMP2 (CPC/BMP2). Group 3 and 4 received the CPC/BMP2 scaffold covered with lyophilized or decellularized/lyophilized HAM. Group 5 underwent a two- step induced membrane procedure with insertion of a polymethylmethacrylate (PMMA) spacer followed by, after 4 weeks, its replacement with the CPC/BMP2 scaffold wrapped in the IM. Micro-CT and histomorphometric analysis were performed after six weeks. Results showed that the CPC scaffold supported the proliferation and osteodifferentiation of hBMSCs in vitro. In vivo, the CPC/BMP2 scaffold very efficiently induced bone formation and led to satisfactory healing of the femoral defect, in a single-step, without autograft or the need for any membrane covering. In this study, there was no difference between the two-step induced membrane procedure and a single step approach. However, the results indicated that none of the tested membranes further enhanced bone healing compared to the CPC/BMP2 group.
AUTHOR e Silva, Edney P. and Huang, Boyang and Helaehil, Júlia V. and Nalesso, Paulo R. L. and Bagne, Leonardo and de Oliveira, Maraiara A. and Albiazetti, Gabriela C. C. and Aldalbahi, Ali and El-Newehy, Mohamed and Santamaria-Jr, Milton and Mendonça, Fernanda A. S. and Bártolo, Paulo and Caetano, Guilherme F.
Title In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering [Abstract]
Year 2021
Journal/Proceedings Bio-Design and Manufacturing
Reftype e Silva2021
DOI/URL DOI
Abstract
Critical bone defects are considered one of the major clinical challenges in reconstructive bone surgery. The combination of 3D printed conductive scaffolds and exogenous electrical stimulation (ES) is a potential favorable approach for bone tissue repair. In this study, 3D conductive scaffolds made with biocompatible and biodegradable polycaprolactone (PCL) and multi-walled carbon nanotubes (MWCNTs) were produced using the extrusion-based additive manufacturing to treat large calvary bone defects in rats. Histology results show that the use of PCL/MWCNTs scaffolds and ES contributes to thicker and increased bone tissue formation within the bone defect. Angiogenesis and mineralization are also significantly promoted using high concentration of MWCNTs (3 wt%) and ES. Moreover, scaffolds favor the tartrate-resistant acid phosphatase (TRAP) positive cell formation, while the addition of MWCNTs seems to inhibit the osteoclastogenesis but present limited effects on the osteoclast functionalities (receptor activator of nuclear factor κβ ligand (RANKL) and osteoprotegerin (OPG) expressions). The use of ES promotes the osteoclastogenesis and RANKL expressions, showing a dominant effect in the bone remodeling process. These results indicate that the combination of 3D printed conductive PCL/MWCNTs scaffold and ES is a promising strategy to treat critical bone defects and provide a cue to establish an optimal protocol to use conductive scaffolds and ES for bone tissue engineering.
AUTHOR Zamani, Yasaman and Amoabediny, Ghassem and Mohammadi, Javad and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke and Helder, Marco N.
Title Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration [Abstract]
Year 2021
Journal/Proceedings Iranian Biomedical Journal
Reftype
DOI/URL URL DOI
Abstract
Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using three-dimensional printing (3DP). Herein, we aimed to determine whether the much tighter control of microstructure of 3DP poly(lactic-co-glycolic) acid/β-tricalcium phosphate (PLGA/β-TCP) scaffolds is more effective in promoting osteogenesis than porous scaffolds produced by solvent casting/porogen leaching. Methods: Physical and mechanical properties of porous and 3DP scaffolds were studied. The response of pre-osteoblasts to the scaffolds was analyzed after 14 days. Results: The 3DP scaffolds had a smoother surface (Ra: 22 ± 3 µm) relative to the highly rough surface of porous scaffolds (Ra: 110 ± 15 µm). Water contact angle was 112 ± 4° on porous and 76 ± 6° on 3DP scaffolds. Porous and 3DP scaffolds had the pore size of 408 ± 90 and 315 ± 17 µm and porosity of 85 ± 5% and 39 ± 7%, respectively. Compressive strength of 3DP scaffolds (4.0 ± 0.3 MPa) was higher than porous scaffolds (1.7 ± 0.2 MPa). Collagenous matrix deposition was similar on both scaffolds. Cells proliferated from day 1 to day 14 by fourfold in porous and by 3.8-fold in 3DP scaffolds. Alkaline phosphatase (ALP) activity was 21-fold higher in 3DP scaffolds than porous scaffolds. Conclusion: The 3DP scaffolds show enhanced mechanical properties and ALP activity compared to porous scaffolds in vitro, suggesting that 3DP PLGA/β-TCP scaffolds are possibly more favorable for bone formation.
AUTHOR Daskalakis, Evangelos and Liu, Fengyuan and Huang, Boyang and Acar, Anil A. and Cooper, Glen and Weightman, Andrew and Blunn, Gordon and Koç, Bahattin and Bartolo, Paulo
Title Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects [Abstract]
Year 2021
Journal/Proceedings International Journal of Bioprinting; Vol 7, No 2 (2021)
Reftype
DOI/URL URL
Abstract
There is a significant unmet clinical need to prevent amputations due to large bone loss injuries. We are addressing this problem by developing a novel, cost-effective osseointegrated prosthetic solution based on the use of modular pieces, bone bricks, made with biocompatible and biodegradable materials that fit together in a Lego-like way to form the prosthesis. This paper investigates the anatomical designed bone bricks with different architectures, pore size gradients, and material compositions. Polymer and polymer-composite 3D printed bone bricks are extensively morphological, mechanical, and biological characterized. Composite bone bricks were produced by mixing polycaprolactone (PCL) with different levels of hydroxyapatite (HA) and β-tri-calcium phosphate (TCP). Results allowed to establish a correlation between bone bricks architecture and material composition and bone bricks performance. Reinforced bone bricks showed improved mechanical and biological results. Best mechanical properties were obtained with PCL/TCP bone bricks with 38 double zig-zag filaments and 14 spiral-like pattern filaments, while the best biological results were obtained with PCL/HA bone bricks based on 25 double zig-zag filaments and 14 spiral-like pattern filaments.
AUTHOR Wang, Weiguang and Chen, Jun-Xiang and Hou, Yanhao and Bartolo, Paulo and Chiang, Wei-Hung
Title Investigations of Graphene and Nitrogen-Doped Graphene Enhanced Polycaprolactone 3D Scaffolds for Bone Tissue Engineering [Abstract]
Year 2021
Journal/Proceedings Nanomaterials
Reftype
DOI/URL URL DOI
Abstract
Scaffolds play a key role in tissue engineering applications. In the case of bone tissue engineering, scaffolds are expected to provide both sufficient mechanical properties to withstand the physiological loads, and appropriate bioactivity to stimulate cell growth. In order to further enhance cell–cell signaling and cell–material interaction, electro-active scaffolds have been developed based on the use of electrically conductive biomaterials or blending electrically conductive fillers to non-conductive biomaterials. Graphene has been widely used as functioning filler for the fabrication of electro-active bone tissue engineering scaffolds, due to its high electrical conductivity and potential to enhance both mechanical and biological properties. Nitrogen-doped graphene, a unique form of graphene-derived nanomaterials, presents significantly higher electrical conductivity than pristine graphene, and better surface hydrophilicity while maintaining a similar mechanical property. This paper investigates the synthesis and use of high-performance nitrogen-doped graphene as a functional filler of poly(ɛ-caprolactone) (PCL) scaffolds enabling to develop the next generation of electro-active scaffolds. Compared to PCL scaffolds and PCL/graphene scaffolds, these novel scaffolds present improved in vitro biological performance.
AUTHOR Lin, Che-Wei and Su, Yu-Feng and Lee, Chih-Yun and Kang, Lin and Wang, Yan-Hsiung and Lin, Sung-Yen and Wang, Chih-Kuang
Title 3D printed bioceramics fabricated using negative thermoresponsive hydrogels and silicone oil sealing to promote bone formation in calvarial defects [Abstract]
Year 2020
Journal/Proceedings Ceramics International
Reftype
DOI/URL URL DOI
Abstract
The purpose of the present work was to investigate the potential for application and the effectiveness of osteoconductive scaffolds with bicontinuous phases of 3D printed bioceramics (3DP-BCs) based on reverse negative thermoresponsive hydrogels (poly[(N-isopropylacrylamide)-co-(methacrylic acid)]; p(NiPAAm-MAA)). 3DP-BCs have bioceramic objects and microchannel pores when created using robotic deposition additive manufacturing. We evaluated the benefits of silicone oil sealing on the 3DP-BC green body during the sintering process in terms of densification and structural stability. The shrinkage, density, porosity, element composition, phase structure and microstructural analyses and compression strength measurements of sintered 3DP-BC objects are presented and discussed in this study. In addition, the results of cell viability assays and bone healing analyses of the calvarial bone defects in a rabbit model were used to evaluate 3DP-BC performance. The main results indicated that these 3DP-BC scaffolds have optimal continuous pores and adequate compressive strength, which can enable the protection of calvarial defects and provide an environment for cell growth. Therefore, 3DP-BC scaffolds have better new bone regeneration efficiency in rabbit calvarial bone defect models than empty scaffolds and mold-forming bioceramic scaffolds (MF-BCs).
AUTHOR Critchley, Susan and Sheehy, Eamon J. and Cunniffe, Gráinne and Diaz-Payno, Pedro and Carroll, Simon F. and Jeon, Oju and Alsberg, Eben and Brama, Pieter A. J. and Kelly, Daniel J.
Title 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects [Abstract]
Year 2020
Journal/Proceedings Acta Biomaterialia
Reftype
DOI/URL URL DOI
Abstract
Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage that is resistant to vascularization and endochondral ossification. During skeletal development articular cartilage also functions as a surface growth plate, which postnatally is replaced by a more spatially complex bone-cartilage interface. Motivated by this developmental process, the hypothesis of this study is that bi-phasic, fibre-reinforced cartilaginous templates can regenerate both the articular cartilage and subchondral bone within osteochondral defects created in caprine joints. To engineer mechanically competent implants, we first compared a range of 3D printed fibre networks (PCL, PLA and PLGA) for their capacity to mechanically reinforce alginate hydrogels whilst simultaneously supporting mesenchymal stem cell (MSC) chondrogenesis in vitro. These mechanically reinforced, MSC-laden alginate hydrogels were then used to engineer the endochondral bone forming phase of bi-phasic osteochondral constructs, with the overlying chondral phase consisting of cartilage tissue engineered using a co-culture of infrapatellar fat pad derived stem/stromal cells (FPSCs) and chondrocytes. Following chondrogenic priming and subcutaneous implantation in nude mice, these bi-phasic cartilaginous constructs were found to support the development of vascularised endochondral bone overlaid by phenotypically stable cartilage. These fibre-reinforced, bi-phasic cartilaginous templates were then evaluated in clinically relevant, large animal (caprine) model of osteochondral defect repair. Although the quality of repair was variable from animal-to-animal, in general more hyaline-like cartilage repair was observed after 6 months in animals treated with bi-phasic constructs compared to animals treated with commercial control scaffolds. This variability in the quality of repair points to the need for further improvements in the design of 3D bioprinted implants for joint regeneration. Statement of Significance Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage. In this study, we hypothesised that bi-phasic, fibre-reinforced cartilaginous templates could be leveraged to regenerate both the articular cartilage and subchondral bone within osteochondral defects. To this end we used 3D printed fibre networks to mechanically reinforce engineered transient cartilage, which also contained an overlying layer of phenotypically stable cartilage engineered using a co-culture of chondrocytes and stem cells. When chondrogenically primed and implanted into caprine osteochondral defects, these fibre-reinforced bi-phasic cartilaginous grafts were shown to spatially direct tissue development during joint repair. Such developmentally inspired tissue engineering strategies, enabled by advances in biofabrication and 3D printing, could form the basis of new classes of regenerative implants in orthopaedic medicine.
AUTHOR Wibowo, Arie and Vyas, Cian and Cooper, Glen and Qulub, Fitriyatul and Suratman, Rochim and Mahyuddin, Andi Isra and Dirgantara, Tatacipta and Bartolo, Paulo
Title 3D Printing of Polycaprolactone-Polyaniline Electroactive Scaffolds for Bone Tissue Engineering. [Abstract]
Year 2020
Journal/Proceedings Materials
Reftype
DOI/URL DOI
Abstract
Electrostimulation and electroactive scaffolds can positively influence and guide cellular behaviour and thus has been garnering interest as a key tissue engineering strategy. The development of conducting polymers such as polyaniline enables the fabrication of conductive polymeric composite scaffolds. In this study, we report on the initial development of a polycaprolactone scaffold incorporating different weight loadings of a polyaniline microparticle filler. The scaffolds are fabricated using screw-assisted extrusion-based 3D printing and are characterised for their morphological, mechanical, conductivity, and preliminary biological properties. The conductivity of the polycaprolactone scaffolds increases with the inclusion of polyaniline. The in vitro cytocompatibility of the scaffolds was assessed using human adipose-derived stem cells to determine cell viability and proliferation up to 21 days. A cytotoxicity threshold was reached at 1% wt. polyaniline loading. Scaffolds with 0.1% wt. polyaniline showed suitable compressive strength (6.45 ± 0.16 MPa) and conductivity (2.46 ± 0.65 × 10(-4) S/cm) for bone tissue engineering applications and demonstrated the highest cell viability at day 1 (88%) with cytocompatibility for up to 21 days in cell culture.
AUTHOR Zamani, Yasaman and Amoabediny, Ghassem and Mohammadi, Javad and Seddiqi, Hadi and Helder, Marco N. and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke and Koolstra, Jan Harm
Title 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering [Abstract]
Year 2020
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
In bone tissue engineering, prediction of forces induced to the native bone during normal functioning is important in the design, fabrication, and integration of a scaffold with the host. The aim of this study was to customize the mechanical properties of a layer-by-layer 3D-printed poly(ϵ-caprolactone) (PCL) scaffold estimated by finite element (FE) modeling in order to match the requirements of the defect, to prevent mechanical failure, and ensure optimal integration with the surrounding tissue. Forces and torques induced on the mandibular symphysis during jaw opening and closing were predicted by FE modeling. Based on the predicted forces, homogeneous-structured PCL scaffolds with 3 different void sizes (0.3, 0.6, and 0.9 mm) were designed and 3D-printed using an extrusion based 3D-bioprinter. In addition, 2 gradient-structured scaffolds were designed and 3D-printed. The first gradient scaffold contained 2 regions (0.3 mm and 0.6 mm void size in the upper and lower half, respectively), whereas the second gradient scaffold contained 3 regions (void sizes of 0.3, 0.6, and 0.9 mm in the upper, middle and lower third, respectively). Scaffolds were tested for their compressive and tensile strength in the upper and lower halves. The actual void size of the homogeneous scaffolds with designed void size of 0.3, 0.6, and 0.9 mm was 0.20, 0.59, and 0.95 mm, respectively. FE modeling showed that during opening and closing of the jaw, the highest force induced on the symphysis was a compressive force in the transverse direction. The compressive force was induced throughout the symphyseal line and reduced from top (362.5 N, compressive force) to bottom (107.5 N, tensile force) of the symphysis. Compressive and tensile strength of homogeneous scaffolds decreased by 1.4-fold to 3-fold with increasing scaffold void size. Both gradient scaffolds had higher compressive strength in the upper half (2 region-gradient scaffold: 4.9 MPa; 3 region-gradient scaffold: 4.1 MPa) compared with the lower half (2 region-gradient scaffold: 2.5 MPa; 3 region-gradient scaffold: 2.7 MPa) of the scaffold. 3D-printed PCL scaffolds had higher compressive strength in the scaffold layer-by-layer building direction compared with the side direction, and a very low tensile strength in the scaffold layer-by-layer building direction. Fluid shear stress and fluid pressure distribution in the gradient scaffolds were more homogeneous than in the 0.3 mm void size scaffold and similar to the 0.6 mm and 0.9 mm void size scaffolds. In conclusion, these data show that the mechanical properties of 3D-printed PCL scaffolds can be tailored based on the predicted forces on the mandibular symphysis. These 3D-printed PCL scaffolds had different mechanical properties in scaffold building direction compared with the side direction, which should be taken into account when placing the scaffold in the defect site. Our findings might have implications for improved performance and integration of scaffolds with native tissue.
AUTHOR Wang, Zehao and Hui, Aiping and Zhao, Hongbin and Ye, Xiaohan and Zhang, Chao and Wang, Aiqin and Zhang, Changqing
Title A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings International Journal of Nanomedicine
Reftype
DOI/URL URL
Abstract
BACKGROUND: Natural clay nanomaterials are an emerging class of biomaterial with great potential for tissue engineering and regenerative medicine applications, most notably for osteogenesis. MATERIALS AND METHODS: Herein, for the first time, novel tissue engineering scaffolds were prepared by 3D bioprinter using nontoxic and bioactive natural attapulgite (ATP) nanorods as starting materials, with polyvinyl alcohol as binder, and then sintered to obtain final scaffolds. The microscopic morphology and structure of ATP particles and scaffolds were observed by transmission electron microscope and scanning electron microscope. In vitro biocompatibility and osteogenesis with osteogenic precursor cell (hBMSCs) were assayed using MTT method, Live/Dead cell staining, alizarin red staining and RT-PCR. In vivo bone regeneration was evaluated with micro-CT and histology analysis in rat cranium defect model. RESULTS: We successfully printed a novel porous nano-ATP scaffold designed with inner channels with a dimension of 500 µm and wall structures with a thickness of 330 µm. The porosity of current 3D-printed scaffolds ranges from 75% to 82% and the longitudinal compressive strength was up to 4.32±0.52 MPa. We found firstly that nano-ATP scaffolds with excellent biocompatibility for hBMSCscould upregulate the expression of osteogenesis-related genes bmp2 and runx2 and calcium deposits in vitro. Interestingly, micro-CT and histology analysis revealed abundant newly formed bone was observed along the defect margin, even above and within the 3D bioprinted porous ATP scaffolds in a rat cranial defect model. Furthermore, histology analysis demonstrated that bone was formed directly following a process similar to membranous ossification without any intermediate cartilage formation and that many newly formed blood vessels are within the pores of 3D-printed scaffolds at four and eight weeks. CONCLUSION: These results suggest that the 3D-printed porous nano-ATP scaffolds are promising candidates for bone tissue engineering by osteogenesis and angiogenesis.
AUTHOR Huang, Boyang and Vyas, Cian and Byun, Jae Jong and El-Newehy, Mohamed and Huang, Zhucheng and Bártolo, Paulo
Title Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation [Abstract]
Year 2020
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
The development of highly biomimetic scaffolds in terms of composition and structures, to repair or replace damaged bone tissues, is particularly relevant for tissue engineering. This paper investigates a 3D printed porous scaffold containing aligned multi-walled carbon nanotubes (MWCNTs) and nano-hydroxyapatite (nHA), mimicking the natural bone tissue from the nanoscale to macroscale level. MWCNTs with similar dimensions as collagen fibres are coupled with nHA and mixed within a polycaprolactone (PCL) matrix to produce scaffolds using a screw-assisted extrusion-based additive manufacturing system. Scaffolds with different material compositions were extensively characterised from morphological, mechanical and biological points of views. Transmission electron microscopy and polarised Raman spectroscopy confirm the presence of aligned MWCNTs within the printed filaments. The PCL/HA/MWCNTs scaffold are similar to the nanostructure of native bone and shows overall increased mechanical properties, cell proliferation, osteogenic differentiation and scaffold mineralisation, indicating a promising approach for bone tissue regeneration.
AUTHOR Zamani, Yasaman and Mohammadi, Javad and Amoabediny, Ghassem and Helder, Marco N. and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke
Title Bioprinting of Alginate-Encapsulated Pre-osteoblasts in PLGA/β-TCP Scaffolds Enhances Cell Retention but Impairs Osteogenic Differentiation Compared to Cell Seeding after 3D-Printing [Abstract]
Year 2020
Journal/Proceedings Regenerative Engineering and Translational Medicine
Reftype Zamani2020
DOI/URL DOI
Abstract
In tissue engineering, cellularization of scaffolds has typically been performed by seeding the cells after scaffold fabrication. 3D-printing technology now allows bioprinting of cells encapsulated in a hydrogel simultaneously with the scaffold material. Here, we aimed to investigate whether bioprinting or cell seeding post-printing is more effective in enhancing responses of pre-osteoblastic MC3T3-E1 cell line derived from mouse calvaria.
AUTHOR Diloksumpan, Paweena and de Ruijter, Myl{`{e}}ne and Castilho, Miguel and Gbureck, Uwe and Vermonden, Tina and van Weeren, P. Ren{'{e}} and Malda, Jos and Levato, Riccardo
Title Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces [Abstract]
Year 2020
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Multi-material 3D printing technologies that resolve features at different lengths down to the microscale open new avenues for regenerative medicine, particularly in the engineering of tissue interfaces. Herein, extrusion printing of a bone-biomimetic ceramic ink and melt electrowriting (MEW) of spatially organized polymeric microfibres are integrated for the biofabrication of an osteochondral plug, with a mechanically reinforced bone-to-cartilage interface. A printable physiological temperature-setting bioceramic, based on α-tricalcium phosphate, nanohydroxyapatite and a custom-synthesized biodegradable and crosslinkable poloxamer, was developed as bone support. The mild setting reaction of the bone ink enabled us to print directly within melt electrowritten polycaprolactone meshes, preserving their micro-architecture. Ceramic-integrated MEW meshes protruded into the cartilage region of the composite plug, and were embedded with mechanically soft gelatin-based hydrogels, laden with articular cartilage chondroprogenitor cells. Such interlocking design enhanced the hydrogel-to-ceramic adhesion strength >6.5-fold, compared with non-interlocking fibre architectures, enabling structural stability during handling and surgical implantation in osteochondral defects ex vivo. Furthermore, the MEW meshes endowed the chondral compartment with compressive properties approaching those of native cartilage (20-fold reinforcement versus pristine hydrogel). The osteal and chondral compartment supported osteogenesis and cartilage matrix deposition in vitro, and the neo-synthesized cartilage matrix further contributed to the mechanical reinforcement at the ceramic-hydrogel interface. This multi-material, multi-scale 3D printing approach provides a promising strategy for engineering advanced composite constructs for the regeneration of musculoskeletal and connective tissue interfaces.
AUTHOR Müller, Michael and Fisch, Philipp and Molnar, Marc and Eggert, Sebastian and Binelli, Marco and Maniura-Weber, Katharina and Zenobi-Wong, Marcy
Title Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering [Abstract]
Year 2020
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Achieving reproducibility in the 3D printing of biomaterials requires a robust polymer synthesis method to reduce batch-to-batch variation as well as methods to assure a thorough characterization throughout the manufacturing process. Particularly biomaterial inks containing large solid fractions such as ceramic particles, often required for bone tissue engineering applications, are prone to inhomogeneity originating from inadequate mixing or particle aggregation which can lead to inconsistent printing results. The production of such an ink for bone tissue engineering consisting of gellan gum methacrylate (GG-MA), hyaluronic acid methacrylate and hydroxyapatite (HAp) particles was therefore optimized in terms of GG-MA synthesis and ink preparation process, and the ink's printability was thoroughly characterized to assure homogeneous and reproducible printing results. A new buffer mediated synthesis method for GG-MA resulted in consistent degrees of substitution which allowed the creation of large 5 g batches. We found that both the new synthesis as well as cryomilling of the polymer components of the ink resulted in a decrease in viscosity from 113 kPa·s to 11.3 kPa·s at a shear rate of 0.1 s−1 but increased ink homogeneity. The ink homogeneity was assessed through thermogravimetric analysis and a newly developed extrusion force measurement setup. The ink displayed strong inter-layer adhesion between two printed ink layers as well as between a layer of ink with and a layer without HAp. The large polymer batch production along with the characterization of the ink during the manufacturing process allows ink production in the gram scale and could be used in applications such as the printing of osteochondral grafts.
AUTHOR Huang, Boyang and Aslan, Enes and Jiang, Zhengyi and Daskalakis, Evangelos and Jiao, Mohan and Aldalbahi, Ali and Vyas, Cian and Bártolo, Paulo
Title Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration [Abstract]
Year 2020
Journal/Proceedings Additive Manufacturing
Reftype
DOI/URL URL DOI
Abstract
Large bone defects due to trauma or disease present a significant clinical challenge with limited efficacy of current therapies. A key aim is to develop biomimetic scaffolds that reflect the native tissue structure with 3D printing being an important enabling technology. However, the incorporation of multiple length scales and anisotropic features, mimicking the native architecture, is difficult with current processes. In this study, we propose a simple and versatile hybrid printing process using a screw-assisted additive manufacturing technique combined with rotational electrospinning to fabricate dual-scale anisotropic scaffolds. 3D microscale porous polycaprolactone (PCL) structures with highly aligned nanoscale fibres were successfully produced layer-by-layer. The scaffolds were morphological, mechanical and biological characterised. Human adipose-derived stem cells (hADSCs) were seeded on the hybrid scaffold to evaluate the effects of structural and anisotropic topographic cues on cell attachment, proliferation and osteogenesis differentiation. Results show that the 3D printed microscale structures have uniform and well-defined geometries and the alignment of nanoscale electrospun fibres increases by increasing the electrospinning rotational velocity. Mechanical results show that there is no significant difference between 3D printed scaffolds with or without electrospun meshes. In vitro results show higher cell seeding efficiency and proliferation in dual-scale scaffolds with high density electrospun meshes. A more stretched and elongated cell morphology was observed in aligned nanofibre scaffolds showing higher anisotropic cytoskeletal organization than 3D printed PCL scaffolds without electrospun meshes. The dual-scale scaffolds present improved overall osteogenic markers expressions (COL-1, ALP and OCN). However, no statistical difference between normalised osteogenic marker expressions were observed between dual-scale scaffolds and 3D printed scaffolds. This might be attributed to the poor bioactivity of the substrate material, PCL, suggesting topographical cues might not be sufficient to stimulate cell fate towards to an osteogenic linage. The results suggest that the proposed fabrication strategy is a promising approach for the design of novel bone scaffolds to modulate cell fates by integrating the topographic cue reported in this paper with biochemical cues associated to the use of more bioactive materials.
AUTHOR Song, Jie-Liang and Fu, Xin-Ye and Raza, Ali and Shen, Nai-An and Xue, Ya-Qi and Wang, Hua-Jie and Wang, Jin-Ye
Title Enhancement of mechanical strength of TCP-alginate based bioprinted constructs [Abstract]
Year 2020
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
To overcome the mechanical drawback of bioink, we proposed a supporter model to enhance the mechanical strength of bioprinted 3D constructs, in which a unit-assembly idea was involved. Based on Computed Tomography images of critical-sized rabbit bone defect, the 3D re-construction was accomplished by a sequenced process using Mimics 17.0, BioCAM and BioCAD software. 3D constructs were bioprinted using polycaprolactone (PCL) ink for the outer supporter under extrusion mode, and cell-laden tricalcium phosphate (TCP)/alginate bioink for the inner filler under air pressure dispensing mode. The relationship of viscosity of bioinks, 3D bioprinting pressure, TCP/alginate ratio and cell survival were investigated by the shear viscosities analysis, live/dead cell test and cell-counting kit 8 measurement. The viscosity of bioinks at 1.0 s−1-shear rate could be adjusted within the range of 1.75 ± 0.29 Pa·s to 155.65 ± 10.86 Pa·s by changing alginate concentration, corresponding to 10 kPa–130 kPa of printing pressure. This design with PCL supporter could significantly enhance the compressive strength and compressive modulus of standardized 3D mechanical testing specimens up to 2.15 ± 0.14 MPa to 2.58 ± 0.09 MPa, and 42.83 ± 4.75 MPa to 53.12 ± 1.19 MPa, respectively. Cells could maintain the high viability (over 80%) under the given printing pressure but cell viability declined with the increase of TCP content. Cell survival after experiencing 7 days of cell culture could be achieved when the ratio of TCP/alginate was 1 : 4. All data supported the feasibility of the supporter and unit-assembly model to enhance mechanical properties of bioprinted 3D constructs.
AUTHOR Dubey, Nileshkumar and Ferreira, Jessica A. and Malda, Jos and Bhaduri, Sarit B. and Bottino, Marco C.
Title Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue [Abstract]
Year 2020
Journal/Proceedings ACS Applied Materials & Interfaces
Reftype
DOI/URL DOI
Abstract
Bioprinting, a promising field in regenerative medicine, holds great potential to create three-dimensional, defect-specific vascularized bones with tremendous opportunities to address unmet craniomaxillofacial reconstructive challenges. A cytocompatible bioink is a critical prerequisite to successfully regenerate functional bone tissue. Synthetic self-assembling peptides have a nanofibrous structure resembling the native extracellular matrix (ECM), making them an excellent bioink component. Amorphous magnesium phosphates (AMPs) have shown greater levels of resorption while maintaining high biocompatibility, osteoinductivity, and low inflammatory response, as compared to their calcium phosphate counterparts. Here, we have established a novel bioink formulation (ECM/AMP) that combines an ECM-based hydrogel containing 2% octapeptide FEFEFKFK and 98% water with AMP particles to realize high cell function with desirable bioprintability. We analyzed the osteogenic differentiation of dental pulp stem cells (DPSCs) encapsulated in the bioink, as well as in vivo bone regeneration, to define the potential of the formulated bioink as a growth factor-free bone-forming strategy. Cell-laden AMP-modified bioprinted constructs showed an improved cell morphology but similar cell viability (∼90%) compared to their AMP-free counterpart. In functional assays, the cell-laden bioprinted constructs modified with AMP exhibited a high level of mineralization and osteogenic gene expression without the use of growth factors, thus suggesting that the presence of AMP-triggered DPSCs’ osteogenic differentiation. Cell-free ECM-based bioprinted constructs were implanted in vivo. In comparison with the ECM group, bone volume per total volume for ECM/1.0AMP was approximately 1.7- and 1.4-fold higher at 4 and 8 weeks, respectively. Further, a significant increase in the bone density was observed in ECM/1.0AMP from 4 to 8 weeks. These results demonstrate that the presence of AMP in the bioink significantly increased bone formation, thus showing promise for in situ bioprinting strategies. We foresee significant potential in translating this innovative bioink toward the regeneration of patient-specific bone tissue for regenerative dentistry. Bioprinting, a promising field in regenerative medicine, holds great potential to create three-dimensional, defect-specific vascularized bones with tremendous opportunities to address unmet craniomaxillofacial reconstructive challenges. A cytocompatible bioink is a critical prerequisite to successfully regenerate functional bone tissue. Synthetic self-assembling peptides have a nanofibrous structure resembling the native extracellular matrix (ECM), making them an excellent bioink component. Amorphous magnesium phosphates (AMPs) have shown greater levels of resorption while maintaining high biocompatibility, osteoinductivity, and low inflammatory response, as compared to their calcium phosphate counterparts. Here, we have established a novel bioink formulation (ECM/AMP) that combines an ECM-based hydrogel containing 2% octapeptide FEFEFKFK and 98% water with AMP particles to realize high cell function with desirable bioprintability. We analyzed the osteogenic differentiation of dental pulp stem cells (DPSCs) encapsulated in the bioink, as well as in vivo bone regeneration, to define the potential of the formulated bioink as a growth factor-free bone-forming strategy. Cell-laden AMP-modified bioprinted constructs showed an improved cell morphology but similar cell viability (∼90%) compared to their AMP-free counterpart. In functional assays, the cell-laden bioprinted constructs modified with AMP exhibited a high level of mineralization and osteogenic gene expression without the use of growth factors, thus suggesting that the presence of AMP-triggered DPSCs’ osteogenic differentiation. Cell-free ECM-based bioprinted constructs were implanted in vivo. In comparison with the ECM group, bone volume per total volume for ECM/1.0AMP was approximately 1.7- and 1.4-fold higher at 4 and 8 weeks, respectively. Further, a significant increase in the bone density was observed in ECM/1.0AMP from 4 to 8 weeks. These results demonstrate that the presence of AMP in the bioink significantly increased bone formation, thus showing promise for in situ bioprinting strategies. We foresee significant potential in translating this innovative bioink toward the regeneration of patient-specific bone tissue for regenerative dentistry.
AUTHOR Abu Awwad, Hosam Al-Deen M. and Thiagarajan, Lalitha and Kanczler, Janos M. and Amer, Mahetab H. and Bruce, Gordon and Lanham, Stuart and Rumney, Robin M. H. and Oreffo, Richard O. C. and Dixon, James E.
Title Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair [Abstract]
Year 2020
Journal/Proceedings Journal of Controlled Release
Reftype
DOI/URL URL DOI
Abstract
Additive manufacturing processes used to create regenerative bone tissue engineered implants are not biocompatible, thereby restricting direct use with stem cells and usually require cell seeding post-fabrication. Combined delivery of stem cells with the controlled release of osteogenic factors, within a mechanically-strong biomaterial combined during manufacturing would replace injectable defect fillers (cements) and allow personalized implants to be rapidly prototyped by 3D bioprinting. Through the use of direct genetic programming via the sustained release of an exogenously delivered transcription factor RUNX2 (delivered as recombinant GET-RUNX2 protein) encapsulated in PLGA microparticles (MPs), we demonstrate that human mesenchymal stromal (stem) cells (hMSCs) can be directly fabricated into a thermo-sintered 3D bioprintable material and achieve effective osteogenic differentiation. Importantly we observed osteogenic programming of gene expression by released GET-RUNX2 (8.2-, 3.3- and 3.9-fold increases in OSX, RUNX2 and OPN expression, respectively) and calcification (von Kossa staining) in our scaffolds. The developed biodegradable PLGA/PEG paste formulation augments high-density bone development in a defect model (~2.4-fold increase in high density bone volume) and can be used to rapidly prototype clinically-sized hMSC-laden implants within minutes using mild, cytocompatible extrusion bioprinting. The ability to create mechanically strong 'cancellous bone-like’ printable implants for tissue repair that contain stem cells and controlled-release of programming factors is innovative, and will facilitate the development of novel localized delivery approaches to direct cellular behaviour for many regenerative medicine applications including those for personalized bone repair.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bartolo, Paulo Jorge Da Silva
Title Investigating the Effect of Carbon Nanomaterials Reinforcing Poly(Ε-Caprolactone) Scaffolds for Bone Repair Applications [Abstract]
Year 2020
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL URL
Abstract
Scaffolds, three-dimensional (3D) substrates providing appropriate mechanical support and biological environments for new tissue formation, are the most common approaches in tissue engineering. To improve scaffold properties such as mechanical properties, surface characteristics, biocompatibility and biodegradability, different types of fillers have been used reinforcing biocompatible and biodegradable polymers. This paper investigates and compares the mechanical and biological behaviors of 3D printed poly(ε-caprolactone) scaffolds reinforced with graphene (G) and graphene oxide (GO) at different concentrations. Results show that contrary to G which improves mechanical properties and enhances cell attachment and proliferation, GO seems to show some cytotoxicity, particular at high contents.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bártolo, Paulo
Title Novel Poly(ɛ-caprolactone)/Graphene Scaffolds for Bone Cancer Treatment and Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Scaffold-based bone tissue engineering is the most relevant approach for critical-sized bone defects. It is based on the use of three-dimensional substrates to provide the appropriate biomechanical environment for bone regeneration. Despite some successful results previously reported, scaffolds were never designed for disease treatment applications. This article proposes a novel dual-functional scaffold for cancer applications, comprising both treatment and regeneration functions. These functions are achieved by combining a biocompatible and biodegradable polymer and graphene. Results indicate that high concentrations of graphene enhance the mechanical properties of the scaffolds, also increasing the inhibition on cancer cell viability and proliferation.
AUTHOR Diloksumpan, Paweena and Bolaños, Rafael Vindas and Cokelaere, Stefan and Pouran, Behdad and de Grauw, Janny and van Rijen, Mattie and van Weeren, René and Levato, Riccardo and Malda, Jos
Title Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Model [Abstract]
Year 2020
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
Abstract The clinical translation of three-dimensionally printed bioceramic scaffolds with tailored architectures holds great promise toward the regeneration of bone to heal critical-size defects. Herein, the long-term in vivo performance of printed hydrogel-ceramic composites made of methacrylated-oligocaprolactone-poloxamer and low-temperature self-setting calcium-phosphates is assessed in a large animal model. Scaffolds printed with different internal architectures, displaying either a designed porosity gradient or a constant pore distribution, are implanted in equine tuber coxae critical size defects. Bone ingrowth is challenged and facilitated only from one direction via encasing the bioceramic in a polycaprolactone shell. After 7 months, total new bone volume and scaffold degradation are significantly greater in structures with constant porosity. Interestingly, gradient scaffolds show lower extent of remodeling and regeneration even in areas having the same porosity as the constant scaffolds. Low regeneration in distal regions from the interface with native bone impairs ossification in proximal regions of the construct, suggesting that anisotropic architectures modulate the cross-talk between distant cells within critical-size defects. The study provides key information on how engineered architectural patterns impact osteoregeneration in vivo, and also indicates the equine tuber coxae as promising orthotopic model for studying materials stimulating bone formation.
AUTHOR Vyas, Cian and Ates, Gokhan and Aslan, Enes and Hart, Jack and Huang, Boyang and Bartolo, Paulo
Title Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented Fibers to Promote Cell Alignment [Abstract]
Year 2020
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Complex and hierarchically functionalized scaffolds composed of micro- and nanoscale structures are a key goal in tissue engineering. The combination of three-dimensional (3D) printing and electrospinning enables the fabrication of these multiscale structures. This study presents a polycaprolactone 3D-printed and electrospun scaffold with multiple mesh layers and fiber densities. The results show successful fabrication of a dual-scale scaffold with the 3D-printed scaffold acting as a gap collector with the printed microfibers as the electrodes and the pores a series of insulating gaps resulting in aligned nanofibers. The electrospun fibers are highly aligned perpendicular to the direction of the printed fiber and form aligned meshes within the pores of the scaffold. Mechanical testing showed no significant difference between the number of mesh layers whereas the hydrophobicity of the scaffold increased with increasing fiber density. Biological results indicate that increasing the number of mesh layers improves cell proliferation, migration, and adhesion. The aligned nanofibers within the microscale pores allowed enhanced cell bridging and cell alignment that was not observed in the 3D-printed only scaffold. These results demonstrate a facile method of incorporating low-density and aligned fibers within a 3D-printed scaffold that is a promising development in multiscale hierarchical scaffolds where alignment of cells can be desirable.
AUTHOR Nasim Golafshan and Elke Vorndran and Stefan Zaharievski and Harold Brommer and Firoz Babu Kadumudi and Alireza Dolatshahi-Pirouz and Uwe Gbureck and René {van Weeren} and Miguel Castilho and Jos Malda
Title Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model [Abstract]
Year 2020
Journal/Proceedings Biomaterials
Reftype
DOI/URL URL DOI
Abstract
One of the important challenges in bone tissue engineering is the development of biodegradable bone substitutes with appropriate mechanical and biological properties for the treatment of larger defects and those with complex shapes. Recently, magnesium phosphate (MgP) doped with biologically active ions like strontium (Sr2+) have shown to significantly enhance bone formation when compared with the standard calcium phosphate-based ceramics. However, such materials can hardly be shaped into large and complex geometries and more importantly lack the adequate mechanical properties for the treatment of load-bearing bone defects. In this study, we have fabricated bone implants through extrusion assisted three-dimensional (3D) printing of MgP ceramics modified with Sr2+ ions (MgPSr) and a medical grade polycaprolactone (PCL) polymer phase. MgPSr with 30 wt% PCL (MgPSr-PCL30) allowed the printability of relevant size structures (>780 mm3) at room temperature with an interconnected macroporosity of approximately 40%. The printing resulted in implants with a compressive strength of 4.3 MPa, which were able to support up to 50 cycles of loading without plastic deformation. Notably, MgPSr-PCL30 scaffolds were able to promote in vitro bone formation in medium without the supplementation with osteo-inducing components. In addition, long-term in vivo performance of the 3D printed scaffolds was investigated in an equine tuber coxae model over 6 months. The micro-CT and histological analysis showed that implantation of MgPSr-PCL30 induced bone regeneration, while no bone formation was observed in the empty defects. Overall, the novel polymer modified MgP ceramic material and extrusion-based 3D printing process presented here greatly improved the shape ability and load bearing properties of MgP-based ceramics with simultaneously induction of new bone formation.
AUTHOR Shen, Jie and Wang, Wenhao and Zhai, Xinyun and Chen, Bo and Qiao, Wei and Li, Wan and Li, Penghui and Zhao, Ying and Meng, Yuan and Qian, Shi and Liu, Xuanyong and Chu, Paul K. and Yeung, Kelvin W. K.
Title 3D-printed nanocomposite scaffolds with tunable magnesium ionic microenvironment induce in situ bone tissue regeneration [Abstract]
Year 2019
Journal/Proceedings Applied Materials Today
Reftype
DOI/URL URL DOI
Abstract
Local tissue microenvironment is able to regulate cell-to-cell interaction that leads to effective tissue repair. This study aims to demonstrate a tunable magnesium ionic (Mg2+) microenvironment in bony tissue that can significantly induce bone defect repair. The concept can be realized by using a newly fabricated nanocomposite comprising of custom-made copolymer polycaprolactone-co-poly(ethylene glycol)-co-polycaprolactone (PCL-PEG-PCL) and surface-modified magnesium oxide (MgO) nanoparticles. In this study, additive manufacturing (AM) technology had been adopted to help design the porous three-dimensional (3D) scaffolds with tunable Mg2+ microenvironment. We found that the wettability and printability of new copolymer had been improved as compared with that of PCL polymer. Additionally, when MgO nanoparticles incorporated into the newly synthesized hydrophilic copolymer matrix, it could lead to increased compressive moduli significantly. In the in vitro studies, the fabricated nanocomposite scaffold with low concentration of Mg2+ microenvironment not only demonstrated better cytocompatibility, but also remarkably enhanced osteogenic differentiation in vitro as compared with the pure PCL and PCL-PEG-PCL co-polymer controls. In the animal studies, we also found that superior and early bone formation and tissue mineralization could be observed in the same 3D printed scaffold. However, the nanocomposite scaffold with high concentration of Mg2+ jeopardized the in situ bony tissue regeneration capability due to excessive magnesium ions in bone tissue microenvironment. Lastly, this study demonstrates that the nanocomposite 3D scaffold with controlled magnesium concentration in bone tissue microenvironment can effectively promote bone defect repair.
AUTHOR Wang, Weiguang and Huang, Boyang and Byun, Jae Jong and Bártolo, Paulo
Title Assessment of PCL/carbon material scaffolds for bone regeneration [Abstract]
Year 2019
Journal/Proceedings Journal of the Mechanical Behavior of Biomedical Materials
Reftype
DOI/URL URL DOI
Abstract
Biomanufacturing is a relatively new research domain focusing on the use of additive manufacturing technologies, biomaterials, cells and biomolecular signals to produce tissue constructs for tissue engineering. For bone regeneration, researchers are focusing on the use of polymeric and polymer/ceramic scaffolds seeded with osteoblasts or mesenchymal stem cells. However, the design of high-performance scaffolds in terms of mechanical, cell-stimulation and biological performance is still required. This is the first paper investigating the use of an extrusion additive manufacturing system to produce poly(ε-caprolactone) (PCL), PCL/graphene nanosheet (GNS) and PCL/carbon nanotube (CNT) scaffolds for bone applications. Scaffolds with regular and reproducible architecture were produced and evaluated from chemical, physical and biological points of view. Results suggest that the addition of both graphene and CNT allow the fabrication of scaffolds with improved properties. It also shows that scaffolds containing graphene present better mechanical properties and high cell-affinity improving cell attachment, proliferation and differentiation.
AUTHOR Freeman, F. E. and Browe, D. C. and Nulty, J. and Von Euw, S. and Grayson, W. L. and Kelly, D. J.
Title Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. [Abstract]
Year 2019
Journal/Proceedings European Cells and Materials Journal
Reftype
DOI/URL URL DOI
Abstract
Interconnected porosity is critical to the design of regenerative scaffolds, as it permits cell migration, vascularisation and diffusion of nutrients and regulatory molecules inside the scaffold. 3D printing is a promising strategy to achieve this as it allows the control over scaffold pore size, porosity and interconnectivity. Thus, the aim of the present study was to integrate distinct biofabrication strategies to develop a multiscale porous scaffold that was not only mechanically functional at the time of implantation, but also facilitated rapid vascularisation and provided stem cells with appropriate cues to enable their differentiation into osteoblasts. To achieve this, polycaprolactone (PCL) was functionalised with decellularised bone extracellular matrix (ECM), to produce osteoinductive filaments for 3D printing. The addition of bone ECM to the PCL not only increased the mechanical properties of the resulting scaffold, but also increased cellular attachment and enhanced osteogenesis of mesenchymal stem cells (MSCs). In vivo, scaffold pore size determined the level of vascularisation, with a larger filament spacing supporting faster vessel in-growth and more new bone formation. By freeze-drying solubilised bone ECM within these 3D-printed scaffolds, it was possible to introduce a matrix network with microscale porosity that further enhanced cellular attachment in vitro and increased vessel infiltration and overall levels of new bone formation in vivo. To conclude, an "off-the-shelf" multiscale bone-ECM-derived scaffold was developed that was mechanically stable and, once implanted in vivo, will drive vascularisation and, ultimately, lead to bone regeneration.
AUTHOR Marques, C. F. and Diogo, G. S. and Pina, S. and Oliveira, J. M. and Silva, T. H. and Reis, R. L.
Title Collagen-based bioinks for hard tissue engineering applications: a comprehensive review [Abstract]
Year 2019
Journal/Proceedings Journal of Materials Science: Materials in Medicine
Reftype
DOI/URL DOI
Abstract
In the last few years, additive manufacturing (AM) has been gaining great interest in the fabrication of complex structures for soft-to-hard tissues regeneration, with tailored porosity, and boosted structural, mechanical, and biological properties. 3D printing is one of the most known AM techniques in the field of biofabrication of tissues and organs. This technique opened up opportunities over the conventional ones, with the capability of creating replicable, customized, and functional structures that can ultimately promote effectively different tissues regeneration. The uppermost component of 3D printing is the bioink, i.e. a mixture of biomaterials that can also been laden with different cell types, and bioactive molecules. Important factors of the fabrication process include printing fidelity, stability, time, shear-thinning properties, mechanical strength and elasticity, as well as cell encapsulation and cell-compatible conditions. Collagen-based materials have been recognized as a promising choice to accomplish an ideal mimetic bioink for regeneration of several tissues with high cell-activating properties. This review presents the state-of-art of the current achievements on 3D printing using collagen-based materials for hard tissue engineering, particularly on the development of scaffolds for bone and cartilage repair/regeneration. The ultimate aim is to shed light on the requirements to successfully print collagen-based inks and the most relevant properties exhibited by the so fabricated scaffolds. In this regard, the adequate bioprinting parameters are addressed, as well as the main materials properties, namely physicochemical and mechanical properties, cell compatibility and commercial availability, covering hydrogels, microcarriers and decellularized matrix components. Furthermore, the fabrication of these bioinks with and without cells used in inkjet printing, laser-assisted printing, and direct in writing technologies are also overviewed. Finally, some future perspectives of novel bioinks are given.
AUTHOR Marchiori, Gregorio and Berni, Matteo and Boi, Marco and Petretta, Mauro and Grigolo, Brunella and Bellucci, Devis and Cannillo, Valeria and Garavelli, Chiara and Bianchi, Michele
Title Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA [Abstract]
Year 2019
Journal/Proceedings Medical Engineering and Physics
Reftype
DOI/URL URL DOI
Abstract
In order to increase manufacturing and experimental efficiency, a certain degree of control over design performances before realization phase is recommended. In this context, this paper presents an integrated procedure to design 3D scaffolds for bone tissue engineering. The procedure required a combination of Computer Aided Design (CAD), Finite Element Analysis (FEA), and Design methodologies Of Experiments (DOE), firstly to understand the influence of the design parameters, and then to control them. Based on inputs from the literature and limitations imposed by the chosen manufacturing process (Precision Extrusion Deposition), 36 scaffold architectures have been drawn. The porosity of each scaffold has been calculated with CAD. Thereafter, a generic scaffold material was considered and its variable parameters were combined with the geometrical ones according to the Taguchi method, i.e. a DOE method. The compressive response of those principal combinations was simulated by FEA, and the influence of each design parameter on the scaffold compressive behaviour was clarified. Finally, a regression model was obtained correlating the scaffold's mechanical performances to its geometrical and material parameters. This model has been applied to a novel composite material made of polycaprolactone and innovative bioactive glass. By setting specific porosity (50%) and stiffness (0.05 GPa) suitable for trabecular bone substitutes, the model selected 4 of the 36 initial scaffold architectures. Only these 4 more promising geometries will be realized and physically tested for advanced indications on compressive strength and biocompatibility.
AUTHOR Wang, Weiguang and Junior, José Roberto Passarini and Nalesso, Paulo Roberto Lopes and Musson, David and Cornish, Jillian and Mendonça, Fernanda and Caetano, Guilherme Ferreira and Bártolo, Paulo
Title Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Scaffolds are important physical substrates for cell attachment, proliferation and differentiation. Multiple factors could influence the optimal design of scaffolds for a specific tissue, such as the geometry, the materials used to modulate cell proliferation and differentiation, its biodegradability and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Previous studies of human adipose-derived stem cells (hADSCs) seeded on poly(ε-caprolactone) (PCL)/graphene scaffolds have proved that the addition of small concentrations of graphene to PCL scaffolds improves cell proliferation. Based on such results, this paper further investigates, for the first time, both in vitro and in vivo characteristics of 3D printed PCL/graphene scaffolds. Scaffolds were evaluated from morphological, biological and short term immune response points of view. Results show that the produced scaffolds induce an acceptable level of immune response, suggesting high potential for in vivo applications. Finally, the scaffolds were used to treat a rat calvaria critical size defect with and without applying micro electrical stimulation (10 μA). Quantification of connective and new bone tissue formation and the levels of ALP, RANK, RANKL, OPG were considered. Results show that the use of scaffolds containing graphene and electrical stimulation seems to increase cell migration and cell influx, leading to new tissue formation, well-organized tissue deposition and bone remodelling.
AUTHOR Huang, Boyang and Vyas, Cian and Roberts, Iwan and Poutrel, Quentin-Arthur and Chiang, Wei-Hung and Blaker, Jonny J. and Huang, Zhucheng and Bártolo, Paulo
Title Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration [Abstract]
Year 2019
Journal/Proceedings Materials Science and Engineering: C
Reftype
DOI/URL URL DOI
Abstract
Carbon nanotubes (CNTs) with exceptional physical and chemical properties are attracting significant interest in the field of tissue engineering. Several reports investigated CNTs biocompatibility and their impact in terms of cell attachment, proliferation and differentiation mainly using polymer/CNTs membranes. However, these 2D membranes are not able to emulate the complex in vivo environment. In this paper, additive manufacturing (3D printing) is used to create composite 3D porous scaffolds containing different loadings of multi-walled carbon nanotubes (MWCNT) (0.25, 0.75 and 3 wt%) for bone tissue regeneration. Pre-processed and processed materials were extensively characterised in terms of printability, morphological and topographic characteristics and thermal, mechanical and biological properties. Scaffolds with pore sizes ranging between 366 μm and 397 μm were successfully produced and able to sustain early-stage human adipose-derived mesenchymal stem cells attachment and proliferation. Results show that MWCNTs enhances protein adsorption, mechanical and biological properties. Composite scaffolds, particularly the 3 wt% loading of MWCNTs, seem to be good candidates for bone tissue regeneration.
AUTHOR Sharma, Aarushi and Desando, Giovanna and Petretta, Mauro and Chawla, Shikha and Bartolotti, Isabella and Manferdini, Cristina and Paolella, Francesca and Gabusi, Elena and Trucco, Diego and Ghosh, Sourabh and Lisignoli, Gina
Title Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional Bioprinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells
Year 2019
Journal/Proceedings ACS Biomaterials Science & Engineering
Reftype
DOI/URL DOI
AUTHOR Dooley, Max and Prasopthum, Aruna and Liao, Zhiyu and Sinjab, Faris and McLaren, Jane and Rose, Felicity R. A. J. and Yang, Jing and Notingher, Ioan
Title Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples [Abstract]
Year 2019
Journal/Proceedings Biomedical Optics Express
Reftype
DOI/URL URL DOI
Abstract
Using phantom samples, we investigated the feasibility of spatially-offset Raman spectroscopy (SORS) as a tool for monitoring non-invasively the mineralization of bone tissue engineering scaffold in-vivo. The phantom samples consisted of 3D-printed scaffolds of poly-caprolactone (PCL) and hydroxyapatite (HA) blends, with varying concentrations of HA, to mimic the mineralisation process. The scaffolds were covered by a 4 mm layer of skin to simulate the real in-vivo measurement conditions. At a concentration of HA approximately 1/3 that of bone (~0.6 g/cm3), the characteristic Raman band of HA (960 cm−1) was detectable when the PCL:HA layer was located at 4 mm depth within the scaffold (i.e. 8 mm below the skin surface). For the layers of the PCL:HA immediately under the skin (i.e. top of the scaffold), the detection limit of HA was 0.18 g/cm3, which is approximately one order of magnitude lower than that of bone. Similar results were also found for the phantoms simulating uniform and inward gradual mineralisation of the scaffold, indicating the suitability of SORS to detect early stages of mineralisation. Nevertheless, the results also show that the contribution of the materials surrounding the scaffold can be significant and methods for subtraction need to be investigated in the future. In conclusion, these results indicate that spatially-offset Raman spectroscopy is a promising technique for in-vivo longitudinal monitoring scaffold mineralization and bone re-growth.
AUTHOR Caetano, Guilherme and Wang, Weiguang and Murashima, Adriana and Passarini, José Roberto and Bagne, Leonardo and Leite, Marcel and Hyppolito, Miguel and Al-Deyab, Salem and El-Newehy, Mohamed and Bártolo, Paulo and Frade, Marco Andrey Cipriani
Title Tissue Constructs with Human Adipose-Derived Mesenchymal Stem Cells to Treat Bone Defects in Rats [Abstract]
Year 2019
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
The use of porous scaffolds created by additive manufacturing is considered a viable approach for the regeneration of critical-size bone defects. This paper investigates the xenotransplantation of polycaprolactone (PCL) tissue constructs seeded with differentiated and undifferentiated human adipose-derived mesenchymal stem cells (hADSCs) to treat calvarial critical-sized defect in Wistar rats. PCL scaffolds without cells were also considered. In vitro and in vivo biological evaluations were performed to assess the feasibility of these different approaches. In the case of cell seeded scaffolds, it was possible to observe the presence of hADSCs in the rat tissue contributing directly (osteoblasts) and indirectly (stimulation by paracrine factors) to tissue formation, organization and mineralization. The presence of bone morphogenetic protein-2 (BMP-2) in the rat tissue treated with cell-seeded PCL scaffolds suggests that the paracrine factors of undifferentiated hADSC cells could stimulate BMP-2 production by surrounding cells, leading to osteogenesis. Moreover, BMP-2 acts synergistically with growth factors to induce angiogenesis, leading to higher numbers of blood vessels in the groups containing undifferentiated and differentiated hADSCs.
AUTHOR Caetano, Guilherme Ferreira and Wang, Weiguang and Chiang, Wei-Hung and Cooper, Glen and Diver, Carl and Blaker, Jonny James and Frade, Marco Andrey and Bártolo, Paulo
Title 3D-Printed Poly(ɛ-caprolactone)/Graphene Scaffolds Activated with P1-Latex Protein for Bone Regeneration [Abstract]
Year 2018
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Abstract Biomanufacturing is a relatively new research domain focusing on the use of additive manufacturing technologies, biomaterials, cells, and biomolecular signals to produce tissue constructs for tissue engineering. For bone regeneration, researchers are focusing on the use of polymeric and polymer/ceramic scaffolds seeded with osteoblasts or mesenchymal stem cells. However, high-performance scaffolds in terms of mechanical, cell stimulation, and biological performance are still required. This article investigates the use of an extrusion additive manufacturing system to produce poly(ɛ-caprolactone) (PCL) and PCL/graphene nanosheet scaffolds for bone applications. Scaffolds with regular and reproducible architecture and uniform dispersion of graphene were produced and coated with P1-latex protein extracted from the Hevea brasiliensis rubber tree. Results show that the obtained scaffolds cultivated with human adipose-derived stem cells present no toxicity effects. The presence of graphene nanosheet and P1-latex protein in the scaffolds increased cell proliferation compared with PCL scaffolds. Moreover, the presence of P1-latex protein promotes earlier osteogenic differentiation, suggesting that PCL/graphene/P1-latex protein scaffolds are suitable for bone regeneration applications.
AUTHOR Wang, Hanxiao and das Neves Domingos, Marco Andre and Scenini, Fabio
Title Advanced mechanical and thermal characterization of 3D bioextruded poly(ε-caprolactone)-based composites [Abstract]
Year 2018
Journal/Proceedings Rapid Prototyping Journal
Reftype
DOI/URL DOI
Abstract
Purpose The main purpose of the present work is to study the effect of nano hydroxyapatite (HA) and graphene oxide (GO) particles on thermal and mechanical performances of 3D printed poly(ε-caprolactone) (PCL) filaments used in Bone Tissue Engineering (BTE). Design/methodology/approach Raw materials were prepared by melt blending, followed by 3D printing via 3D Discovery (regenHU Ltd., CH) with all fabricating parameters kept constant. Filaments, including pure PCL, PCL/HA, and PCL/GO, were tested under the same conditions. Several techniques were used to mechanically, thermally, and microstructurally evaluate properties of these filaments, including Differential Scanning Calorimetry (DSC), tensile test, nano indentation, and Scanning Electron Microscope (SEM). Findings Results show that both HA and GO nano particles are capable of improving mechanical performance of PCL. Enhanced mechanical properties of PCL/HA result from reinforcing effect of HA, while a different mechanism is observed in PCL/GO, where degree of crystallinity plays an important role. In addition, GO is more efficient at enhancing mechanical performance of PCL compared with HA. Originality/value For the first time, a systematic study about effects of nano HA and GO particles on bioactive scaffolds produced by Additive Manufacturing (AM) for bone tissue engineering applications is conducted in this work. Mechanical and thermal behaviors of each sample, pure PCL, PCL/HA and PCL/GO, are reported, correlated, and compared with literature.
AUTHOR Prasopthum, Aruna and Shakesheff, Kevin M. and Yang, Jing
Title Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography [Abstract]
Year 2018
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Three-dimensional (3D) printing is a powerful manufacturing tool for making 3D structures with well-defined architectures for a wide range of applications. The field of tissue engineering has also adopted this technology to fabricate scaffolds for tissue regeneration. The ability to control architecture of scaffolds, e.g. matching anatomical shapes and having defined pore size, has since been improved significantly. However, the material surface of these scaffolds is smooth and does not resemble that found in natural extracellular matrix (ECM), in particular, the nanofibrous morphology of collagen. This natural nanoscale morphology plays a critical role in cell behaviour. Here, we have developed a new approach to directly fabricate polymeric scaffolds with an ECM-like nanofibrous topography and defined architectures using extrusion-based 3D printing. 3D printed tall scaffolds with interconnected pores were created with disparate features spanning from nanometres to centimetres. Our approach removes the need for a sacrificial mould and subsequent mould removal compared to previous methods. Moreover, the nanofibrous topography of the 3D printed scaffolds significantly enhanced protein absorption, cell adhesion and differentiation of human mesenchymal stem cells when compared to those with smooth material surfaces. These 3D printed scaffolds with both defined architectures and nanoscale ECM-mimicking morphologies have potential applications in cartilage and bone regeneration.
AUTHOR Zamani, Yasaman and Mohammadi, Javad and Amoabediny, Ghassem and Visscher, Dafydd O. and Helder, Marco N. and Zandieh-Doulabi, Behrouz and Klein-Nulend, Jenneke
Title Enhanced osteogenic activity by {MC}3T3-E1 pre-osteoblasts on chemically surface-modified poly($upepsilon$-caprolactone) 3D-printed scaffolds compared to {RGD} immobilized scaffolds [Abstract]
Year 2018
Journal/Proceedings Biomedical Materials
Reftype
DOI/URL DOI
Abstract
In bone tissue engineering, the intrinsic hydrophobicity and surface smoothness of three-dimensional (3D)-printed poly(ε-caprolactone) scaffolds hamper cell attachment, proliferation and differentiation. This intrinsic hydrophobicity of poly(ε-caprolactone) can be overcome by surface modifications, such as surface chemical modification or immobilization of biologically active molecules on the surface. Moreover, surface chemical modification may alter surface smoothness. Whether surface chemical modification or immobilization of a biologically active molecule on the surface is more effective to enhance pre-osteoblast proliferation and differentiation is currently unknown. Therefore, we aimed to investigate the osteogenic response of MC3T3-E1 pre-osteoblasts to chemically surface-modified and RGD-immobilized 3D-printed poly(ε-caprolactone) scaffolds. Poly(ε-caprolactone) scaffolds were 3D-printed consisting of strands deposited layer by layer with alternating 0°/90° lay-down pattern. 3D-printed poly(ε-caprolactone) scaffolds were surface-modified by either chemical modification using 3 M sodium hydroxide (NaOH) for 24 or 72 h, or by RGD-immobilization. Strands were visualized by scanning electron microscopy. MC3T3-E1 pre-osteoblasts were seeded onto the scaffolds and cultured up to 14 d. The strands of the unmodified poly(ε-caprolactone) scaffold had a smooth surface. NaOH treatment changed the scaffold surface topography from smooth to a honeycomb-like surface pattern, while RGD immobilization did not alter the surface topography. MC3T3-E1 pre-osteoblast seeding efficiency was similar (44%–54%) on all scaffolds after 12 h. Cell proliferation increased from day 1 to day 14 in unmodified controls (1.9-fold), 24 h NaOH-treated scaffolds (3-fold), 72 h NaOH-treated scaffolds (2.2-fold), and RGD-immobilized scaffolds (4.5-fold). At day 14, increased collagenous matrix deposition was achieved only on 24 h NaOH-treated (1.8-fold) and RGD-immobilized (2.2-fold) scaffolds compared to unmodified controls. Moreover, 24 h, but not 72 h, NaOH-treated scaffolds, increased alkaline phosphatase activity by 5-fold, while the increase by RGD immobilization was only 2.5-fold. Only 24 h NaOH-treated scaffolds enhanced mineralization (2.0-fold) compared to unmodified controls. In conclusion, RGD immobilization (0.011 μg mg−1 scaffold) on the surface and 24 h NaOH treatment of the surface of 3D-printed PCL scaffold both enhance pre-osteoblast proliferation and matrix deposition while only 24 h NaOH treatment results in increased osteogenic activity, making it the treatment of choice to promote bone formation by osteogenic cells.
AUTHOR Monz{'o}n, Mario and Liu, Chaozong and Ajami, Sara and Oliveira, Miguel and Donate, Ricardo and Ribeiro, Viviana and Reis, Rui L.
Title Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds
Year 2018
Journal/Proceedings Bio-Design and Manufacturing
Reftype
DOI/URL DOI
AUTHOR D'Amora, Ugo and D'Este, Matteo and Eglin, David and Safari, Fatemeh and Sprecher, Christoph and Gloria, Antonio and De Santis, Roberto and Alini, Mauro and Ambrosio, Luigi
Title Collagen Density Gradient on 3D Printed Poly(ε-Caprolactone) Scaffolds for Interface Tissue Engineering
Year 2017
Journal/Proceedings Journal of tissue engineering and regenerative medicine
Reftype
DOI/URL DOI
AUTHOR Freeman, Fiona E. and Kelly, Daniel J.
Title Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues [Abstract]
Year 2017
Journal/Proceedings Scientific Reports
Reftype Freeman2017
DOI/URL DOI
Abstract
Alginate is a commonly used bioink in 3D bioprinting. Matrix stiffness is a key determinant of mesenchymal stem cell (MSC) differentiation, suggesting that modulation of alginate bioink mechanical properties represents a promising strategy to spatially regulate MSC fate within bioprinted tissues. In this study, we define a printability window for alginate of differing molecular weight (MW) by systematically varying the ratio of alginate to ionic crosslinker within the bioink. We demonstrate that the MW of such alginate bioinks, as well as the choice of ionic crosslinker, can be tuned to control the mechanical properties (Young’s Modulus, Degradation Rate) of 3D printed constructs. These same factors are also shown to influence growth factor release from the bioinks. We next explored if spatially modulating the stiffness of 3D bioprinted hydrogels could be used to direct MSC fate inside printed tissues. Using the same alginate and crosslinker, but varying the crosslinking ratio, it is possible to bioprint constructs with spatially varying mechanical microenvironments. Moreover, these spatially varying microenvironments were found to have a significant effect on the fate of MSCs within the alginate bioinks, with stiffer regions of the bioprinted construct preferentially supporting osteogenesis over adipogenesis.
AUTHOR Daly, Andrew C. and Cunniffe, Gr{'{a}}inne M. and Sathy, Binulal N. and Jeon, Oju and Alsberg, Eben and Kelly, Daniel J.
Title 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering [Abstract]
Year 2016
Journal/Proceedings Advanced Healthcare Materials
Reftype
DOI/URL DOI
Abstract
The ability to print defined patterns of cells and extracellular-matrix components in three dimensions has enabled the engineering of simple biological tissues; however, bioprinting functional solid organs is beyond the capabilities of current biofabrication technologies. An alternative approach would be to bioprint the developmental precursor to an adult organ, using this engineered rudiment as a template for subsequent organogenesis in vivo. This study demonstrates that developmentally inspired hypertrophic cartilage templates can be engineered in vitro using stem cells within a supporting gamma-irradiated alginate bioink incorporating Arg-Gly-Asp adhesion peptides. Furthermore, these soft tissue templates can be reinforced with a network of printed polycaprolactone fibers, resulting in a ≈350 fold increase in construct compressive modulus providing the necessary stiffness to implant such immature cartilaginous rudiments into load bearing locations. As a proof-of-principal, multiple-tool biofabrication is used to engineer a mechanically reinforced cartilaginous template mimicking the geometry of a vertebral body, which in vivo supported the development of a vascularized bone organ containing trabecular-like endochondral bone with a supporting marrow structure. Such developmental engineering approaches could be applied to the biofabrication of other solid organs by bioprinting precursors that have the capacity to mature into their adult counterparts over time in vivo.
AUTHOR Visscher, Dafydd O. and Farré-Guasch, Elisabet and Helder, Marco N. and Gibbs, Susan and Forouzanfar, Tymour and van Zuijlen, Paul P. and Wolff, Jan
Title Advances in Bioprinting Technologies for Craniofacial Reconstruction [Abstract]
Year 2016
Journal/Proceedings Trends in Biotechnology
Reftype
DOI/URL DOI
Abstract
Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years. Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years.
AUTHOR Caetano, Guilherme and Violante, Ricardo and Sant{'{}}Ana, Ana Beatriz and Murashima, Adriana Batista and Domingos, Marco and Gibson, Andrew and B{'{a}}rtolo, Paulo and Frade, Marco Andrey
Title Cellularized versus decellularized scaffolds for bone regeneration [Abstract]
Year 2016
Journal/Proceedings Materials Letters
Reftype
DOI/URL URL DOI
Abstract
Abstract An optimal scaffold based strategy for in vivo repair of large bone defects and its associated problems is presented in this work. Three polymeric scaffolds produced by using an extrusion-based additive manufacturing system were examined in a rat critical bone defect model: scaffolds without cells, with undifferentiated Adipose-derived mesenchymal stem cells (ADSCs) and differentiated {ADSCs} (osteoblasts). Scaffolds with undifferentiated cells seem to be the best strategy as they exhibited around 22% more bone formation than natural bone healing, and around 15% more than the two other cases. Authors observed that scaffolds enabled cell migration and tissue formation. Results suggest that undifferentiated {ADSCs} strongly contribute to new bone formation with no rejection if scaffolds are used to support cell migration, proliferation and differentiation. Our long-term goal is to engineer high-quality cell seeded-scaffolds (autograft and allograft) for bone regeneration, mainly in elderly patients.
AUTHOR Carrel, Jean‐Pierre and Wiskott, Anselm and Scherrer, Susanne and Durual, Stéphane
Title Large Bone Vertical Augmentation Using a Three‐Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible [Abstract]
Year 2016
Journal/Proceedings Clinical Implant Dentistry and Related Research
Reftype
DOI/URL DOI
Abstract
Abstract Background Osteoflux is a three‐dimensional printed calcium phosphate porous structure for oral bone augmentation. It is a mechanically stable scaffold with a well‐defined interconnectivity and can be readily shaped to conform to the bone bed's morphology. Purpose An animal experiment is reported whose aim was to assess the performance and safety of the scaffold in promoting vertical growth of cortical bone in the mandible. Materials and methods Four three‐dimensional blocks (10 mm length, 5 mm width, 5 mm height) were affixed to edentulous segments of the dog's mandible and covered by a collagen membrane. During bone bed preparation, particular attention was paid not to create defects 0.5 mm or more so that the real potential of the three‐dimensional block in driving vertical bone growth can be assessed. Histomorphometric analyses were performed after 8 weeks. Results At 8 weeks, the three‐dimensional blocks led to substantial vertical bone growth up to 4.5 mm from the bone bed. Between 0 and 1 mm in height, 44% of the surface was filled with new bone, at 1 to 3 mm it was 20% to 35%, 18% at 3 to 4, and ca. 6% beyond 4 mm. New bone was evenly distributed along in mesio‐distal direction and formed a new crest contour in harmony with the natural mandibular shape. Conclusions After two months of healing, the three‐dimensional printed blocks conducted new bone growth above its natural bed, up to 4.5 mm in a canine mandibular model. Furthermore, the new bone was evenly distributed in height and density along the block. These results are very promising and need to be further evaluated by a complete powerful study using the same model.
AUTHOR Wang, Weiguang and Caetano, Guilherme and Chiang, Wei-Hung and Sousa, Ana Leticia and Blaker, Jonny and Frade, M. A. R. C. O. and Frade, Cipriani and Jorge Bártolo, Paulo
Title Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration [Abstract]
Year 2016
Journal/Proceedings International Journal of Bioprinting
Reftype
DOI/URL URL
Abstract
Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as mechanical properties, surface characteristics, biodegradability, biocompatibility, and porosity. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion additive manufacturing system to produce PCL/pristine graphene scaffolds for bone tissue applications. PCL/pristine graphene blends were prepared using a melt blending process. Scaffolds with regular and reproducible architecture were produced with different concentrations of pristine graphene. Scaffolds were evaluated from morphological, mechanical, and biological view. The results suggest that the addition of pristine graphene improves the mechanical performance of the scaffolds, reduces the hydrophobicity, and improves cell viability and proliferation.
AUTHOR Moussa, Mira and Carrel, Jean-Pierre and Scherrer, Susanne and Cattani-Lorente, Maria and Wiskott, Anselm and Durual, Stéphane
Title Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation [Abstract]
Year 2015
Journal/Proceedings Materials
Reftype
DOI/URL URL DOI
Abstract
Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP) and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8). Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3%) and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%). These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.
AUTHOR Carrel, Jean-Pierre and Wiskott, Anselm and Moussa, Mira and Rieder, Philippe and Scherrer, Susanne and Durual, St{'{e}}phane
Title A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation [Abstract]
Year 2014
Journal/Proceedings Clinical Oral Implants Research
Reftype
DOI/URL DOI
Abstract
Introduction OsteoFlux® (OF) is a 3D printed porous block of layered strands of tricalcium phosphate (TCP) and hydroxyapatite. Its porosity and interconnectivity are defined, and it can be readily shaped to conform the bone bed's morphology. We investigated the performance of OF as a scaffold to promote the vertical growth of cortical bone in a sheep calvarial model. Materials and methods Six titanium hemispheres were filled with OF, Bio-Oss (particulate bovine bone, BO), or Ceros (particulate TCP, CO) and placed onto the calvaria of 12 adult sheep (6 hemispheres/sheep). Histomorphometric analyses were performed after 8 and 16 weeks. Results OF led to substantial vertical bone growth by 8 weeks and outperformed BO and CO by a factor 2 yielding OF 22% ± 2.1; BO 11.5% ± 1.9; and CO 12.9% ± 2.1 total new bone. 3 mm away from the bony bed, OF led to a fourfold increase in new bone relative to BO and CO (n = 8, P < 0.002). At 16 weeks, OF, BO, and CO behaved similarly and showed marked new bone synthesis. A moderate degradation was observed at 16 weeks for all bone substitutes. Conclusion When compared to existing bone substitutes, OF enhances vertical bone growth during the first 2 months after implantation in a sheep calvarial model. The controlled porous structure translated in a high osteoconductivity and resulted in a bone mass 3 mm above the bony bed that was four times greater than that obtained with standard substitutes. These results are promising but must be confirmed in clinical tests.