BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: HeLa
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
All Groups
- Biomaterial
- Non-cellularized gels/pastes
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Ionic Liquids
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Magnetorheological fluid (MR fluid – MRF)
- Salecan
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Jeffamine
- Polyethylene
- SEBS
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- Micro/nano-particles
- Biological Molecules
- Bioinks
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- Cellulose
- Novogel
- Hyaluronic Acid
- Peptide gel
- Methacrylated Silk Fibroin
- Polyethylene glycol (PEG) based
- α-Bioink
- Collagen
- Elastin
- Heparin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Silk Fibroin
- Pyrogallol
- Xanthan Gum
- Fibrinogen
- Fibrin
- Paeoniflorin
- Fibronectin
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Solid Dosage Drugs
- Thermoplastics
- Non-cellularized gels/pastes
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- Retinal
- Chondrocytes
- Embrionic Kidney (HEK)
- Corneal Stromal Cells
- Fibroblasts
- β cells
- Myoblasts
- Pericytes
- Hepatocytes
- Cancer Cell Lines
- Bacteria
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Osteoblasts
- Monocytes
- Mesothelial cells
- Epithelial
- Neutrophils
- Adipocytes
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Stem Cells
- Spheroids
- Meniscus Cells
- Synoviocytes
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Neurons
- Macrophages
- Human Trabecular Meshwork Cells
- Endothelial
- CardioMyocites
- Melanocytes
- Institution
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- University of Toronto
- Brown University
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Montreal University
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Harbin Institute of Technology
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- University of Sheffield
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- Tiangong University
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Innsbruck University
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Politecnico di Torino
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- University of Nottingham
- University of Geneva
- SINTEF
- Rice University
- Trinity College
- Novartis
- University of Central Florida
- Hefei University
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Biomaterial Processing
- Tissue Models – Drug Discovery
- Industrial
- Drug Discovery
- In Vitro Models
- Robotics
- Electronics – Robotics – Industrial
- Medical Devices
- Tissue and Organ Biofabrication
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Muscle Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Delivery
- Skin Tissue Engineering
- Vascularization
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
- Review Paper
- Printing Technology
AUTHOR
Title
Electrospun/3D-Printed Bicomponent Scaffold Co-Loaded with a Prodrug and a Drug with Antibacterial and Immunomodulatory Properties
[Abstract]
Year
2023
Journal/Proceedings
Polymers
Reftype
Groups
AbstractThis work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin–polyethylene glycol–indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing.
AUTHOR
Title
Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing
[Abstract]
Year
2023
Journal/Proceedings
Gels
Reftype
Groups
AbstractNatural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide’s polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
AUTHOR
Title
Preventing Memory Effects in Surface-Enhanced Raman Scattering Substrates by Polymer Coating and Laser-Activated Deprotection
[Abstract]
Year
2021
Journal/Proceedings
ACS Nano
Reftype
DOI/URL
DOI
Groups
AbstractThe development of continuous monitoring systems requires in situ sensors that are capable of screening multiple chemical species and providing real-time information. Such in situ measurements, in which the sample is analyzed at the point of interest, are hindered by underlying problems derived from the recording of successive measurements within complex environments. In this context, surface-enhanced Raman scattering (SERS) spectroscopy appears as a noninvasive technology with the ability of identifying low concentrations of chemical species as well as resolving dynamic processes under different conditions. To this aim, the technique requires the use of a plasmonic substrate, typically made of nanostructured metals such as gold or silver, to enhance the Raman signal of adsorbed molecules (the analyte). However, a common source of uncertainty in real-time SERS measurements originates from the irreversible adsorption of (analyte) molecules onto the plasmonic substrate, which may interfere in subsequent measurements. This so-called “SERS memory effect” leads to measurements that do not accurately reflect varying conditions of the sample over time. We introduce herein the design of plasmonic substrates involving a nonpermeable poly(lactic-co-glycolic acid) (PLGA) thin layer on top of the plasmonic nanostructure, toward controlling the adsorption of molecules at different times. The polymeric layer can be locally degraded by irradiation with the same laser used for SERS measurements (albeit at a higher fluence), thereby creating a micrometer-sized window on the plasmonic substrate available to molecules present in solution at a selected measurement time. Using SERS substrates coated with such thermolabile polymer layers, we demonstrate the possibility of performing over 10,000 consecutive measurements per substrate as well as accurate continuous monitoring of analytes in microfluidic channels and biological systems. The development of continuous monitoring systems requires in situ sensors that are capable of screening multiple chemical species and providing real-time information. Such in situ measurements, in which the sample is analyzed at the point of interest, are hindered by underlying problems derived from the recording of successive measurements within complex environments. In this context, surface-enhanced Raman scattering (SERS) spectroscopy appears as a noninvasive technology with the ability of identifying low concentrations of chemical species as well as resolving dynamic processes under different conditions. To this aim, the technique requires the use of a plasmonic substrate, typically made of nanostructured metals such as gold or silver, to enhance the Raman signal of adsorbed molecules (the analyte). However, a common source of uncertainty in real-time SERS measurements originates from the irreversible adsorption of (analyte) molecules onto the plasmonic substrate, which may interfere in subsequent measurements. This so-called “SERS memory effect” leads to measurements that do not accurately reflect varying conditions of the sample over time. We introduce herein the design of plasmonic substrates involving a nonpermeable poly(lactic-co-glycolic acid) (PLGA) thin layer on top of the plasmonic nanostructure, toward controlling the adsorption of molecules at different times. The polymeric layer can be locally degraded by irradiation with the same laser used for SERS measurements (albeit at a higher fluence), thereby creating a micrometer-sized window on the plasmonic substrate available to molecules present in solution at a selected measurement time. Using SERS substrates coated with such thermolabile polymer layers, we demonstrate the possibility of performing over 10,000 consecutive measurements per substrate as well as accurate continuous monitoring of analytes in microfluidic channels and biological systems.
AUTHOR
Year
2020
Journal/Proceedings
Advanced Functional Materials
Reftype
DOI/URL
DOI
Groups
AbstractAbstract 3D printing strategies have acquired great relevance toward the design of 3D scaffolds with precise macroporous structures, for supported mammalian cell growth. Despite advances in 3D model designs, there is still a shortage of detection tools to precisely monitor in situ cell behavior in 3D, thereby allowing a better understanding of the progression of diseases or to test the efficacy of drugs in a more realistic microenvironment. Even if the number of available inks has exponentially increased, they do not necessarily offer the required functionalities to be used as internal sensors. Herein the potential of surface-enhanced Raman scattering (SERS) spectroscopy for the detection of biorelevant analytes within a plasmonic hydrogel-based, 3D-printed scaffold is demonstrated. Such SERS-active scaffolds allow for the 3D detection of model molecules, such as 4-mercaptobenzoic acid. Flexibility in the choice of plasmonic nanoparticles is demonstrated through the use of gold nanoparticles with different morphologies, gold nanorods showing the best balance between SERS enhancement and scaffold transparency. Detection of the biomarker adenosine is also demonstrated as a proof-of-concept toward the use of these plasmonic scaffolds for SERS sensing of cell-secreted molecules over extended periods of time.
AUTHOR
Year
2020
Journal/Proceedings
Advanced Functional Materials
Reftype
DOI/URL
DOI
Groups
AbstractAbstract The composition and intercellular interactions of tumor cells in the tissues dictate the biochemical and metabolic properties of the tumor microenvironment. The metabolic rewiring has a profound impact on the properties of the microenvironment, to an extent that monitoring such perturbations could harbor diagnostic and therapeutic relevance. A growing interest in these phenomena has inspired the development of novel technologies with sufficient sensitivity and resolution to monitor metabolic alterations in the tumor microenvironment. In this context, surface-enhanced Raman scattering (SERS) can be used for the label-free detection and imaging of diverse molecules of interest among extracellular components. Herein, the application of nanostructured plasmonic substrates comprising Au nanoparticles, self-assembled as ordered superlattices, to the precise SERS detection of selected tumor metabolites, is presented. The potential of this technology is first demonstrated through the analysis of kynurenine, a secreted immunomodulatory derivative of the tumor metabolism and the related molecules tryptophan and purine derivatives. SERS facilitates the unambiguous identification of trace metabolites and allows the multiplex detection of their characteristic fingerprints under different conditions. Finally, the effective plasmonic SERS substrate is combined with a hydrogel-based three-dimensional cancer model, which recreates the tumor microenvironment, for the real-time imaging of metabolite alterations and cytotoxic effects on tumor cells.