BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Synoviocytes
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Review Paper
- Printing Technology
- Biomaterial
- Non-cellularized gels/pastes
- Epoxy
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- poly (ethylene-co -vinyl acetate) (PEVA)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Poly(trimethylene carbonate)
- Paraffin
- Pluronic – Poloxamer
- Polyisobutylene
- Polyphenylene Oxide
- Ionic Liquids
- Silicone
- Konjac Gum
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Salecan
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- Jeffamine
- Poly(methyl methacrylate) (PMMA)
- PEDOT
- SEBS
- Polypropylene Oxide (PPO)
- Polyethylene
- Sucrose Acetate
- Carbopol
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Xanthan Gum
- Silk Fibroin
- Pyrogallol
- Paeoniflorin
- Fibronectin
- Fibrinogen
- Fibrin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- carboxybetaine acrylamide (CBAA)
- Cellulose
- Novogel
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
- Hyaluronic Acid
- Peptide gel
- Poly(Acrylic Acid)
- Polyethylene glycol (PEG) based
- α-Bioink
- Heparin
- sulfobetaine methacrylate (SBMA)
- Collagen
- Elastin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Ceramics
- Metals
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Thermoplastics
- Coaxial Extruder
- Non-cellularized gels/pastes
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- CardioMyocites
- Melanocytes
- Retinal
- Corneal Stromal Cells
- Annulus Fibrosus Cells
- Chondrocytes
- Embrionic Kidney (HEK)
- Astrocytes
- Fibroblasts
- β cells
- Hepatocytes
- Myoblasts
- Pericytes
- Epicardial Cells
- Cancer Cell Lines
- Bacteria
- Extracellular Vesicles
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Monocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Osteoblasts
- Neutrophils
- Adipocytes
- Smooth Muscle Cells
- Epithelial
- T cells
- Organoids
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Meniscus Cells
- Synoviocytes
- Stem Cells
- Spheroids
- Skeletal Muscle-Derived Cells (SkMDCs)
- Keratinocytes
- Macrophages
- Human Trabecular Meshwork Cells
- Neurons
- Endothelial
- Institution
- SINTEF
- Rice University
- Jiangsu University
- University of Nottingham
- University of Geneva
- University of Central Florida
- Hefei University
- Leibniz University Hannover
- Trinity College
- Novartis
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- Chalmers University of Technology
- Karlsruhe institute of technology
- Univerity of Hong Kong
- University of Toronto
- Brown University
- Polish Academy of Sciences
- AO Research Institute (ARI)
- Shanghai University
- University of Nantes
- Montreal University
- Shandong Medical University
- University of Wurzburg
- Technical University of Dresden
- Myiongji University
- Harbin Institute of Technology
- Technical University of Berlin
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- University Children's Hospital Zurich
- University of Amsterdam
- University of Tel Aviv
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- University of Aveiro
- Bayreuth University
- Aschaffenburg University
- Sree Chitra Tirunal Institute
- University of Sheffield
- University of Michigan – Biointerfaces Institute
- Ghent University
- Chiao Tung University
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- University of Taiwan
- National University of Singapore
- CIC biomaGUNE
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- University of Vilnius
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- L'Oreal
- Tiangong University
- Xi’an Children’s Hospital
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- University of Bordeaux
- Innsbruck University
- DWI – Leibniz Institute
- ETH Zurich
- Hallym University
- Nanjing Medical University
- KU Leuven
- Politecnico di Torino
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Veterans Administration Medical Center
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- ENEA
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Tissue Models – Drug Discovery
- Industrial
- Biomaterial Processing
- In Vitro Models
- Robotics
- Drug Discovery
- Medical Devices
- Electronics – Robotics – Industrial
- Tissue and Organ Biofabrication
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Muscle Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Dental Tissue Engineering
- Bone Tissue Engineering
- Urethra Tissue Engineering
- Drug Delivery
- Uterus Tissue Engineering
- Skin Tissue Engineering
- Nerve – Neural Tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
AUTHOR
Year
2023
Journal/Proceedings
Applied Sciences
Reftype
Groups
Abstract(1) Background: Synovial tissue plays a fundamental role in inflammatory processes. Therefore, understanding the mechanisms regulating healthy and diseased synovium functions, as in rheumatic diseases, is crucial to discovering more effective therapies to minimize or prevent pathological progress. The present study aimed at developing a bioartificial synovial tissue as an in vitro model for drug screening or personalized medicine applications using 3D bioprinting technology. (2) Methods: The volumetric extrusion technique has been used to fabricate cell-laden scaffolds. Gelatin Methacryloyl (GelMA), widely applied in regenerative medicine and tissue engineering, was selected as a bioink and combined with an immortalized cell line of fibroblast-like synoviocytes (K4IM). (3) Results: Three different GelMA formulations, 7.5–10–12.5% w/v, were tested for the fabrication of the scaffold with the desired morphology and internal architecture. GelMA 10% w/v was chosen and combined with K4IM cells to fabricate scaffolds that showed high cell viability and negligible cytotoxicity for up to 14 days tested by Live & Dead and lactate dehydrogenase assays. (4) Conclusions: We successfully 3D bioprinted synoviocytes-laden scaffolds as a proof-of-concept (PoC) towards the fabrication of a 3D synovial membrane model suitable for in vitro studies. However, further research is needed to reproduce the complexity of the synovial microenvironment to better mimic the physiological condition.