You are researching: Epoxy
Matching entries: 2 /2
All Groups
AUTHOR Afanasenkau, Dzmitry and Kalinina, Daria and Lyakhovetskii, Vsevolod and Tondera, Christoph and Gorsky, Oleg and Moosavi, Seyyed and Pavlova, Natalia and Merkulyeva, Natalia and Kalueff, Allan V. and Minev, Ivan R. and Musienko, Pavel
Title Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces [Abstract]
Year 2020
Journal/Proceedings Nature Biomedical Engineering
Reftype Afanasenkau2020
Neuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability. This technology might enable personalized bioelectronics for neuroprosthetic applications.
AUTHOR Zhang, Danwei and Jonhson, Win and Herng, Tun Seng and Ang, Yong Quan and Yang, Lin and Tan, Swee Ching and Peng, Erwin and He, Hui and Ding, Jun
Title A 3D-printing method of fabrication for metals{,} ceramics{,} and multi-materials using a universal self-curable technique for robocasting [Abstract]
Year 2019
Journal/Proceedings Materials Horizons
Ceramics and metals are important materials that modern technologies are constructed from. The capability to produce such materials in a complex geometry with good mechanical properties can revolutionize the way we engineer our devices. Current curing techniques pose challenges such as high energy requirements{,} limitations of materials with high refractive index{,} tedious post-processing heat treatment processes{,} uneven drying shrinkages{,} and brittleness of green bodies. In this paper{,} a novel modified self-curable epoxide–amine 3D printing system is proposed to print a wide range of ceramics (metal oxides{,} nitrides{,} and carbides) and metals without the need for an external curing source. Through this technique{,} complex multi-material structures (with metal–ceramic and ceramic–ceramic combinations) can also be realized. Tailoring and matching the sintering temperatures of different materials through sintering additives and dopants{,} combined with a structural design providing maximum adhesion between interfaces{,} allow us to successfully obtain superior quality sintered multi-material structures. High-quality ceramic and metallic materials have been achieved (e.g.{,} zirconia with >98% theoretical density). Also{,} highly conductive metals and magnetic ceramics were printed and shaped uniquely without the need for a sacrificial support. With the addition of low molecular weight plasticizers and a multi-stage heat treatment process{,} crack-free and dense high-quality integrated multi-material structures fabricated by 3D printing can thus be a reality in the near future.