TUTORIALS / DOCUMENTATIONS
USE CASES / WHITE PAPERS / WEBINARS
SCIENTIFIC PUBLICATIONS
You are researching: Xanthan Gum
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Application
- Tissue Models – Drug Discovery
- Tissue and Organ Biofabrication
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Drug Delivery
- Skin Tissue Engineering
- Vascularization
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Biomaterial Processing
- Drug Discovery
- Electronics – Robotics – Industrial
- BioSensors
- Personalised Pharmaceuticals
- Bioprinting Technologies
- Biomaterials & Bioinks
- Cell Type
- Organoids
- Meniscus Cells
- Skeletal Muscle-Derived Cells (SkMDCs)
- Macrophages
- Corneal Stromal Cells
- Stem Cells
- Chondrocytes
- Fibroblasts
- Myoblasts
- Cancer Cell Lines
- Articular cartilage progenitor cells (ACPCs)
- Osteoblasts
- Epithelial
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Spheroids
- Keratinocytes
- Neurons
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Embrionic Kidney (HEK)
- β cells
- Pericytes
- Bacteria
- Tenocytes
- Bioprinting Applications
- Institution
- University of Barcelona
- Rice University
- Hefei University
- Abu Dhabi University
- University of Sheffield
- DTU – Technical University of Denmark
- INM – Leibniz Institute for New Materials
- Innsbruck University
- Montreal University
- Harbin Institute of Technology
- ETH Zurich
- Nanyang Technological University
- Utrecht Medical Center (UMC)
- University of Manchester
- University of Nottingham
- Trinity College
- Chalmers University of Technology
- AO Research Institute (ARI)
- University of Wurzburg
- Institute for Bioengineering of Catalonia (IBEC)
- University of Amsterdam
- Bayreuth University
- Ghent University
- National University of Singapore
- Adolphe Merkle Institute Fribourg
- Zurich University of Applied Sciences (ZHAW)
- Hallym University
- National Institutes of Health (NIH)
- Rizzoli Orthopaedic Institute
- University of Bucharest
- University of Geneva
- Novartis
- Karlsruhe institute of technology
- Shanghai University
- Technical University of Dresden
- University of Michigan – School of Dentistry
- University of Tel Aviv
- Aschaffenburg University
- Chiao Tung University
- CIC biomaGUNE
- Halle-Wittenberg University
- Innotere
- Nanjing Medical University
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Queen Mary University
- Royal Free Hospital
- SINTEF
- University of Central Florida
- University of Freiburg
- Univerity of Hong Kong
- University of Nantes
- Myiongji University
- University of Applied Sciences Northwestern Switzerland
- University of Michigan, Biointerfaces Institute
- Sree Chitra Tirunal Institute
- Kaohsiung Medical University
- Baylor College of Medicine
- L'Oreal
- University of Bordeaux
- KU Leuven
- Veterans Administration Medical Center
- Hong Kong University
- Review Paper
- Printing Technology
- Biomaterial
- Thermoplastics
- Bioinks
- Xanthan Gum
- Paeoniflorin
- Alginate
- Gelatin-Methacryloyl (GelMA)
- Cellulose
- Hyaluronic Acid
- Polyethylene glycol (PEG) based
- Collagen
- Gelatin
- Gellan Gum
- Methacrylated hyaluronic acid (HAMA)
- Silk Fibroin
- Fibrinogen
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Carrageenan
- Chitosan
- Glycerol
- Poly(glycidol)
- Agarose
- methacrylated chondroitin sulfate (CSMA)
- Novogel
- Peptide gel
- α-Bioink
- Elastin
- Matrigel
- Methacrylated Chitosan
- Pectin
- Pyrogallol
- Fibrin
- Methacrylated Collagen (CollMA)
- Glucosamine
- Non-cellularized gels/pastes
- Jeffamine
- Mineral Oil
- Pluronic – Poloxamer
- Silicone
- Polyvinylpyrrolidone (PVP)
- Salt-based
- Acrylates
- 2-hydroxyethyl-methacrylate (HEMA)
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Polyethylene
- Carbopol
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- Poly(trimethylene carbonate)
- Polyisobutylene
- Konjac Gum
- Gelatin-Sucrose Matrix
- Chlorella Microalgae
- Poly(Vinyl Formal)
- Phenylacetylene
- 2-hydroxyethyl) methacrylate (HEMA)
- Paraffin
- Polyphenylene Oxide
- Micro/nano-particles
- Biological Molecules
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Ceramics
- Metals
AUTHOR
Title
A simple and scalable 3D printing methodology for generating aligned and extended human and murine skeletal muscle tissues
[Abstract]
Year
2022
Journal/Proceedings
Biomedical Materials
Reftype
DOI/URL
DOI
Groups
AbstractPreclinical biomedical and pharmaceutical research on disease causes, drug targets, and side effects increasingly relies on in vitro models of human tissue. 3D printing offers unique opportunities for generating models of superior physiological accuracy, as well as for automating their fabrication. Towards these goals, we here describe a simple and scalable methodology for generating physiologically relevant models of skeletal muscle. Our approach relies on dual-material micro-extrusion of two types of gelatin hydrogel into patterned soft substrates with locally alternating stiffness. We identify minimally complex patterns capable of guiding the large-scale self-assembly of aligned, extended, and contractile human and murine skeletal myotubes. Interestingly, we find high-resolution patterning is not required, as even patterns with feature sizes of several hundred micrometers is sufficient. Consequently, the procedure is rapid and compatible with any low-cost extrusion-based 3D printer. The generated myotubes easily span several millimeters, and various myotube patterns can be generated in a predictable and reproducible manner. The compliant nature and adjustable thickness of the hydrogel substrates, serves to enable extended culture of contractile myotubes. The method is further readily compatible with standard cell-culturing platforms as well as commercially available electrodes for electrically induced exercise and monitoring of the myotubes.