REGENHU-Switzerland-3d-bioprinting-instrument-bio-3d-bioprinter-DevelopmentTeam-0006

SCIENTIFIC PUBLICATIONS

You are researching: Poly(trimethylene carbonate)
Matching entries: 1 /1
All Groups
AUTHOR Geven, Mike A. and Sprecher, Christoph and Guillaume, Olivier and Eglin, David and Grijpma, Dirk W.
Title Micro-porous composite scaffolds of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite prepared by low-temperature extrusion-based additive manufacturing [Abstract]
Year 2016
Journal/Proceedings Polymers for Advanced Technologies
Reftype
DOI/URL DOI
Abstract
Complex bony defects such as those of the orbital floor are challenging to repair. Additive manufacturing techniques open up possibilities for the fabrication of implants with a designed macro-porosity for the reconstruction of such defects. Apart from a designed macro-porosity for tissue ingrowth, a micro-porosity in the implant struts will be beneficial for nutrient diffusion, protein adsorption and drug loading and release. In this work, we report on a low-temperature extrusion-based additive manufacturing method for the preparation of composite photo-crosslinked structures of poly(trimethylene carbonate) with bone-forming nano-hydroxyapatite and noricaritin (derived from bone growth stimulating icariin). In this method, we extrude a dispersion of nano-hydroxyapatite and noricaritin particles in a solution of photo-crosslinkable poly(trimethylene carbonate) in ethylene carbonate into defined three-dimensional structures. The ethylene carbonate is subsequently crystallized and extracted after photo-crosslinking. We show that this results in designed macro-porous structures with micro-pores in the struts. The dispersion used to fabricate these structures shows favorable properties for extrusion-based processing, such as a sharp crystallization response and shear thinning. The formed photo-crosslinked materials have a micro-porosity of up to 48%, and the E modulus, ultimate tensile strength and toughness are in excess of 24 MPa, 2.0 N/mm2 and 113 N/mm2 respectively. A sustained release of noricaritin from these materials was also achieved. The results show that the technique described here is promising for the fabrication of micro-porous photo-crosslinked composite structures of poly(trimethylene carbonate) with nano-hydroxyapatite and that these may be applied in the reconstruction of orbital floor defects. Copyright © 2016 John Wiley & Sons, Ltd.