BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Poly(methyl methacrylate) (PMMA)
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
Cell Type
Tissue and Organ Biofabrication
All Groups
- Review Paper
- Printing Technology
- Biomaterial
- Coaxial Extruder
- Non-cellularized gels/pastes
- Sucrose Acetate
- Carbopol
- Epoxy
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- poly (ethylene-co -vinyl acetate) (PEVA)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- Zein
- Acrylamide
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Ionic Liquids
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Salecan
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- Jeffamine
- Poly(methyl methacrylate) (PMMA)
- PEDOT
- SEBS
- Polypropylene Oxide (PPO)
- Polyethylene
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Xanthan Gum
- Silk Fibroin
- Pyrogallol
- Paeoniflorin
- Fibronectin
- Fibrinogen
- Fibrin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- carboxybetaine acrylamide (CBAA)
- Cellulose
- Novogel
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
- Hyaluronic Acid
- Peptide gel
- Poly(Acrylic Acid)
- Polyethylene glycol (PEG) based
- α-Bioink
- Heparin
- sulfobetaine methacrylate (SBMA)
- Collagen
- Elastin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Solid Dosage Drugs
- Thermoplastics
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Corneal Stromal Cells
- Annulus Fibrosus Cells
- Chondrocytes
- Embrionic Kidney (HEK)
- Astrocytes
- Fibroblasts
- β cells
- Hepatocytes
- Myoblasts
- Pericytes
- Epicardial Cells
- Cancer Cell Lines
- Bacteria
- Extracellular Vesicles
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Monocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Osteoblasts
- Neutrophils
- Adipocytes
- Smooth Muscle Cells
- Epithelial
- T cells
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Synoviocytes
- Stem Cells
- Spheroids
- Meniscus Cells
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Macrophages
- Human Trabecular Meshwork Cells
- Neurons
- Institution
- University of Barcelona
- Chinese Academy of Sciences
- ENEA
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- Rice University
- Jiangsu University
- University of Nottingham
- University of Geneva
- SINTEF
- Hefei University
- Leibniz University Hannover
- Trinity College
- Novartis
- University of Central Florida
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- University of Toronto
- Brown University
- Polish Academy of Sciences
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- Montreal University
- Shandong Medical University
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Harbin Institute of Technology
- Technical University of Berlin
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Anhui Polytechnic
- University Children's Hospital Zurich
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Abu Dhabi University
- Jiao Tong University
- University of Aveiro
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- University of Sheffield
- University of Michigan – Biointerfaces Institute
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- DTU – Technical University of Denmark
- University of Taiwan
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- University of Vilnius
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- Tiangong University
- Xi’an Children’s Hospital
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- Innsbruck University
- DWI – Leibniz Institute
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Politecnico di Torino
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Tissue Models – Drug Discovery
- Industrial
- Biomaterial Processing
- In Vitro Models
- Robotics
- Drug Discovery
- Medical Devices
- Electronics – Robotics – Industrial
- Tissue and Organ Biofabrication
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Muscle Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Dental Tissue Engineering
- Bone Tissue Engineering
- Urethra Tissue Engineering
- Drug Delivery
- Uterus Tissue Engineering
- Skin Tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
AUTHOR
Year
2023
Journal/Proceedings
Journal of the Mechanical Behavior of Biomedical Materials
Reftype
Groups
AbstractPoly (methyl methacrylate) (PMMA) is a synthetic polymer commonly used for medical implants in cranioplasty and orthopedic surgery owing to its excellent mechanical properties, optical transparency, and minimal inflammatory responses. Recently, the development of 3D printing opens new avenues in the fabrication of patient-specific PMMA implants for personalized medicine. However, challenges are confronted when adapting medical-grade PMMA to the 3D printing process due to its dynamic viscosity and nonself-supporting characteristics before cured. In addition, the intrinsically exothermic polymerization of MMA brings about bubble generation issues that reduce its mechanical performance harshly. Therefore, in this study, an embedded 3D printing methodology followed by pressurized thermo-curing is proposed and developed: a granular alginate microgel is designed for serving as a supporting matrix when jamming formed between the granules to structurally support the extruded precursor filaments of PMMA-MMA ink during both 3D printing and post-curing; moreover, the autoclave reactor enclosing the alginate matrix and as-sculpted PMMA structures is utilized to generate temperature-dependent pressure, which serves for suppressing the bubbles and solidifying the polymerized MMA during the post-curing process. The 3D printed PMMA is comparably matchable to traditional PMMA castings in terms of their microstructures, density, thermal properties, mechanical performance and biocompatibility. In the future, the proposed embedded 3D printing platform combined with the special post-curing method has great potential for a customized and cost-effective fabrication of patient-specific, complex and functional PMMA implants.