BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: α-Bioink
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
All Groups
- Review Paper
- Printing Technology
- Biomaterial
- Non-cellularized gels/pastes
- Epoxy
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- poly (ethylene-co -vinyl acetate) (PEVA)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Poly(trimethylene carbonate)
- Paraffin
- Pluronic – Poloxamer
- Polyisobutylene
- Polyphenylene Oxide
- Ionic Liquids
- Silicone
- Konjac Gum
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Salecan
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- Jeffamine
- Poly(methyl methacrylate) (PMMA)
- PEDOT
- SEBS
- Polypropylene Oxide (PPO)
- Polyethylene
- Sucrose Acetate
- Carbopol
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Xanthan Gum
- Silk Fibroin
- Pyrogallol
- Paeoniflorin
- Fibronectin
- Fibrinogen
- Fibrin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- carboxybetaine acrylamide (CBAA)
- Cellulose
- Novogel
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
- Hyaluronic Acid
- Peptide gel
- Poly(Acrylic Acid)
- Polyethylene glycol (PEG) based
- α-Bioink
- Heparin
- sulfobetaine methacrylate (SBMA)
- Collagen
- Elastin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Ceramics
- Metals
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Thermoplastics
- Coaxial Extruder
- Non-cellularized gels/pastes
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- CardioMyocites
- Melanocytes
- Retinal
- Corneal Stromal Cells
- Annulus Fibrosus Cells
- Chondrocytes
- Embrionic Kidney (HEK)
- Astrocytes
- Fibroblasts
- β cells
- Hepatocytes
- Myoblasts
- Pericytes
- Epicardial Cells
- Cancer Cell Lines
- Bacteria
- Extracellular Vesicles
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Monocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Osteoblasts
- Neutrophils
- Adipocytes
- Smooth Muscle Cells
- Epithelial
- T cells
- Organoids
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Meniscus Cells
- Synoviocytes
- Stem Cells
- Spheroids
- Skeletal Muscle-Derived Cells (SkMDCs)
- Keratinocytes
- Macrophages
- Human Trabecular Meshwork Cells
- Neurons
- Endothelial
- Institution
- SINTEF
- Rice University
- Jiangsu University
- University of Nottingham
- University of Geneva
- University of Central Florida
- Hefei University
- Leibniz University Hannover
- Trinity College
- Novartis
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- Chalmers University of Technology
- Karlsruhe institute of technology
- Univerity of Hong Kong
- University of Toronto
- Brown University
- Polish Academy of Sciences
- AO Research Institute (ARI)
- Shanghai University
- University of Nantes
- Montreal University
- Shandong Medical University
- University of Wurzburg
- Technical University of Dresden
- Myiongji University
- Harbin Institute of Technology
- Technical University of Berlin
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- University Children's Hospital Zurich
- University of Amsterdam
- University of Tel Aviv
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- University of Aveiro
- Bayreuth University
- Aschaffenburg University
- Sree Chitra Tirunal Institute
- University of Sheffield
- University of Michigan – Biointerfaces Institute
- Ghent University
- Chiao Tung University
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- University of Taiwan
- National University of Singapore
- CIC biomaGUNE
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- University of Vilnius
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- L'Oreal
- Tiangong University
- Xi’an Children’s Hospital
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- University of Bordeaux
- Innsbruck University
- DWI – Leibniz Institute
- ETH Zurich
- Hallym University
- Nanjing Medical University
- KU Leuven
- Politecnico di Torino
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Veterans Administration Medical Center
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- ENEA
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Tissue Models – Drug Discovery
- Industrial
- Biomaterial Processing
- In Vitro Models
- Robotics
- Drug Discovery
- Medical Devices
- Electronics – Robotics – Industrial
- Tissue and Organ Biofabrication
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Muscle Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Dental Tissue Engineering
- Bone Tissue Engineering
- Urethra Tissue Engineering
- Drug Delivery
- Uterus Tissue Engineering
- Skin Tissue Engineering
- Nerve – Neural Tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
AUTHOR
Title
Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue
[Abstract]
Year
2020
Journal/Proceedings
ACS Applied Materials & Interfaces
Reftype
DOI/URL
DOI
Groups
AbstractBioprinting, a promising field in regenerative medicine, holds great potential to create three-dimensional, defect-specific vascularized bones with tremendous opportunities to address unmet craniomaxillofacial reconstructive challenges. A cytocompatible bioink is a critical prerequisite to successfully regenerate functional bone tissue. Synthetic self-assembling peptides have a nanofibrous structure resembling the native extracellular matrix (ECM), making them an excellent bioink component. Amorphous magnesium phosphates (AMPs) have shown greater levels of resorption while maintaining high biocompatibility, osteoinductivity, and low inflammatory response, as compared to their calcium phosphate counterparts. Here, we have established a novel bioink formulation (ECM/AMP) that combines an ECM-based hydrogel containing 2% octapeptide FEFEFKFK and 98% water with AMP particles to realize high cell function with desirable bioprintability. We analyzed the osteogenic differentiation of dental pulp stem cells (DPSCs) encapsulated in the bioink, as well as in vivo bone regeneration, to define the potential of the formulated bioink as a growth factor-free bone-forming strategy. Cell-laden AMP-modified bioprinted constructs showed an improved cell morphology but similar cell viability (∼90%) compared to their AMP-free counterpart. In functional assays, the cell-laden bioprinted constructs modified with AMP exhibited a high level of mineralization and osteogenic gene expression without the use of growth factors, thus suggesting that the presence of AMP-triggered DPSCs’ osteogenic differentiation. Cell-free ECM-based bioprinted constructs were implanted in vivo. In comparison with the ECM group, bone volume per total volume for ECM/1.0AMP was approximately 1.7- and 1.4-fold higher at 4 and 8 weeks, respectively. Further, a significant increase in the bone density was observed in ECM/1.0AMP from 4 to 8 weeks. These results demonstrate that the presence of AMP in the bioink significantly increased bone formation, thus showing promise for in situ bioprinting strategies. We foresee significant potential in translating this innovative bioink toward the regeneration of patient-specific bone tissue for regenerative dentistry. Bioprinting, a promising field in regenerative medicine, holds great potential to create three-dimensional, defect-specific vascularized bones with tremendous opportunities to address unmet craniomaxillofacial reconstructive challenges. A cytocompatible bioink is a critical prerequisite to successfully regenerate functional bone tissue. Synthetic self-assembling peptides have a nanofibrous structure resembling the native extracellular matrix (ECM), making them an excellent bioink component. Amorphous magnesium phosphates (AMPs) have shown greater levels of resorption while maintaining high biocompatibility, osteoinductivity, and low inflammatory response, as compared to their calcium phosphate counterparts. Here, we have established a novel bioink formulation (ECM/AMP) that combines an ECM-based hydrogel containing 2% octapeptide FEFEFKFK and 98% water with AMP particles to realize high cell function with desirable bioprintability. We analyzed the osteogenic differentiation of dental pulp stem cells (DPSCs) encapsulated in the bioink, as well as in vivo bone regeneration, to define the potential of the formulated bioink as a growth factor-free bone-forming strategy. Cell-laden AMP-modified bioprinted constructs showed an improved cell morphology but similar cell viability (∼90%) compared to their AMP-free counterpart. In functional assays, the cell-laden bioprinted constructs modified with AMP exhibited a high level of mineralization and osteogenic gene expression without the use of growth factors, thus suggesting that the presence of AMP-triggered DPSCs’ osteogenic differentiation. Cell-free ECM-based bioprinted constructs were implanted in vivo. In comparison with the ECM group, bone volume per total volume for ECM/1.0AMP was approximately 1.7- and 1.4-fold higher at 4 and 8 weeks, respectively. Further, a significant increase in the bone density was observed in ECM/1.0AMP from 4 to 8 weeks. These results demonstrate that the presence of AMP in the bioink significantly increased bone formation, thus showing promise for in situ bioprinting strategies. We foresee significant potential in translating this innovative bioink toward the regeneration of patient-specific bone tissue for regenerative dentistry.