BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Uterus Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
All Groups
- Review Paper
- Printing Technology
- Biomaterial
- Non-cellularized gels/pastes
- Epoxy
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- poly (ethylene-co -vinyl acetate) (PEVA)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- Zein
- Acrylamide
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Ionic Liquids
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Salecan
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- Jeffamine
- Poly(methyl methacrylate) (PMMA)
- PEDOT
- SEBS
- Polypropylene Oxide (PPO)
- Polyethylene
- Sucrose Acetate
- Carbopol
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Xanthan Gum
- Silk Fibroin
- Pyrogallol
- Paeoniflorin
- Fibronectin
- Fibrinogen
- Fibrin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- carboxybetaine acrylamide (CBAA)
- Cellulose
- Novogel
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
- Hyaluronic Acid
- Peptide gel
- Poly(Acrylic Acid)
- Polyethylene glycol (PEG) based
- α-Bioink
- Heparin
- sulfobetaine methacrylate (SBMA)
- Collagen
- Elastin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Solid Dosage Drugs
- Thermoplastics
- Coaxial Extruder
- Non-cellularized gels/pastes
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- CardioMyocites
- Melanocytes
- Retinal
- Corneal Stromal Cells
- Annulus Fibrosus Cells
- Chondrocytes
- Embrionic Kidney (HEK)
- Astrocytes
- Fibroblasts
- β cells
- Hepatocytes
- Myoblasts
- Pericytes
- Epicardial Cells
- Cancer Cell Lines
- Bacteria
- Extracellular Vesicles
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Monocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Osteoblasts
- Neutrophils
- Adipocytes
- Smooth Muscle Cells
- Epithelial
- T cells
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Synoviocytes
- Stem Cells
- Spheroids
- Meniscus Cells
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Macrophages
- Human Trabecular Meshwork Cells
- Neurons
- Endothelial
- Institution
- Rice University
- Jiangsu University
- University of Nottingham
- University of Geneva
- SINTEF
- Hefei University
- Leibniz University Hannover
- Trinity College
- Novartis
- University of Central Florida
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- University of Toronto
- Brown University
- Polish Academy of Sciences
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- Montreal University
- Shandong Medical University
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Harbin Institute of Technology
- Technical University of Berlin
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Anhui Polytechnic
- University Children's Hospital Zurich
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Abu Dhabi University
- Jiao Tong University
- University of Aveiro
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- University of Sheffield
- University of Michigan – Biointerfaces Institute
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- DTU – Technical University of Denmark
- University of Taiwan
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- University of Vilnius
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- Tiangong University
- Xi’an Children’s Hospital
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- Innsbruck University
- DWI – Leibniz Institute
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Politecnico di Torino
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- Chinese Academy of Sciences
- ENEA
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Tissue Models – Drug Discovery
- Industrial
- Biomaterial Processing
- In Vitro Models
- Robotics
- Drug Discovery
- Medical Devices
- Electronics – Robotics – Industrial
- Tissue and Organ Biofabrication
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Muscle Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Dental Tissue Engineering
- Bone Tissue Engineering
- Urethra Tissue Engineering
- Drug Delivery
- Uterus Tissue Engineering
- Skin Tissue Engineering
- Nerve – Neural Tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
AUTHOR
Title
Multilayered Shape-Morphing Scaffolds with a Hierarchical Structure for Uterine Tissue Regeneration
[Abstract]
Year
2024
Journal/Proceedings
ACS Appl. Mater. Interfaces
Reftype
DOI/URL
DOI
Groups
AbstractOwing to dysfunction of the uterus, millions of couples around the world suffer from infertility. Different from conventional treatments, tissue engineering provides a new and promising approach to deal with difficult problems such as human tissue or organ failure. Adopting scaffold-based tissue engineering, three-dimensional (3D) porous scaffolds in combination with stem cells and appropriate biomolecules may be constructed for uterine tissue regeneration. In this study, a hierarchical tissue engineering scaffold, which mimicked the uterine tissue structure and functions, was designed, and the biomimicking scaffolds were then successfully fabricated using solvent casting, layer-by-layer assembly, and 3D bioprinting techniques. For the multilayered, hierarchical structured scaffolds, poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, “PLATMC” in short) and poly(lactic acid-co-glycolic acid) (PLGA) blends were first used to fabricate the shape-morphing layer of the scaffolds, which was to mimic the function of myometrium in uterine tissue. The PLATMC/PLGA polymer blend scaffolds were highly stretchable. Subsequently, after etching of the PLATMC/PLGA surface and employing estradiol (E2), polydopamine (PDA), and hyaluronic acid (HA), PDA@E2/HA multilayer films were formed on PLATMC/PLGA scaffolds to build an intelligent delivery platform to enable controlled and sustained release of E2. The PDA@E2/HA multilayer films also improved the biological performance of the scaffold. Finally, a layer of bone marrow-derived mesenchymal stem cell (BMSC)-laden hydrogel [which was a blend of gelatin methacryloyl (GelMA) and gelatin (Gel)] was 3D printed on the PDA@E2/HA multilayer films of the scaffold, thereby completing the construction of the hierarchical scaffold. BMSCs in the GelMA/Gel hydrogel layer exhibited excellent cell viability and could spread and be released eventually upon biodegradation of the GelMA/Gel hydrogel. It was shown that the hierarchically structured scaffolds could evolve from the initial flat shape into the tubular structure completely in an aqueous environment at 37 °C, fulfilling the requirement for curved scaffolds for uterine tissue engineering. The biomimicking scaffolds with a hierarchical structure and curved shape, high stretchability, and controlled and sustained E2 release appear to be very promising for uterine tissue regeneration.