SCIENTIFIC PUBLICATIONS

You are researching: University of Michigan - Biointerfaces Institute
Matching entries: 4 /4
All Groups
AUTHOR Yao, Y. and Raymond, J. E. and Kauffmann, F. and Maekawa, S. and Sugai, J. V. and Lahann, J. and Giannobile, W. V.
Title Multicompartmental Scaffolds for Coordinated Periodontal Tissue Engineering [Abstract]
Year 2023
Journal/Proceedings Journal of Dental Research
Reftype
DOI/URL DOI
Abstract
Successful periodontal repair and regeneration requires the coordinated responses from soft and hard tissues as well as the soft tissue–to–bone interfaces. Inspired by the hierarchical structure of native periodontal tissues, tissue engineering technology provides unique opportunities to coordinate multiple cell types into scaffolds that mimic the natural periodontal structure in vitro. In this study, we designed and fabricated highly ordered multicompartmental scaffolds by melt electrowriting, an advanced 3-dimensional (3D) printing technique. This strategy attempted to mimic the characteristic periodontal microenvironment through multicompartmental constructs comprising 3 tissue-specific regions: 1) a bone compartment with dense mesh structure, 2) a ligament compartment mimicking the highly aligned periodontal ligaments (PDLs), and 3) a transition region that bridges the bone and ligament, a critical feature that differentiates this system from mono- or bicompartmental alternatives. The multicompartmental constructs successfully achieved coordinated proliferation and differentiation of multiple cell types in vitro within short time, including both ligamentous- and bone-derived cells. Long-term 3D coculture of primary human osteoblasts and PDL fibroblasts led to a mineral gradient from calcified to uncalcified regions with PDL-like insertions within the transition region, an effect that is challenging to achieve with mono- or bicompartmental platforms. This process effectively recapitulates the key feature of interfacial tissues in periodontium. Collectively, this tissue-engineered approach offers a fundament for engineering periodontal tissue constructs with characteristic 3D microenvironments similar to native tissues. This multicompartmental 3D printing approach is also highly compatible with the design of next-generation scaffolds, with both highly adjustable compartmentalization properties and patient-specific shapes, for multitissue engineering in complex periodontal defects.
AUTHOR Kerneis, Fabienne and Bognar, Ernest and Stanbery, Laura and Moon, Seongjun and Kim, Do Hoon and Deng, Yuxuan and Hughes, Elliot and Chun, Tae-Hwa and Tharp, Darron and Zupanc, Heidi and Jay, Chris and Walter, Adam and Nemunaitis, John and Lahann, Joerg
Title 3D engineered scaffold for large-scale Vigil immunotherapy production [Abstract]
Year 2024
Journal/Proceedings Scientific Reports
Reftype Kerneis2024
DOI/URL DOI
Abstract
Previously, we reported successful cellular expansion of a murine colorectal carcinoma cell line (CT-26) using a three-dimensional (3D) engineered extracellular matrix (EECM) fibrillar scaffold structure. CCL-247 were grown over a limited time period of 8 days on 3D EECM or tissue culture polystyrene (TCPS). Cells were then assayed for growth, electroporation efficiency and Vigil manufacturing release criteria. Using EECM scaffolds, we report an expansion of CCL-247 (HCT116), a colorectal carcinoma cell line, from a starting concentration of 2.45 × 105 cells to 1.9 × 106 cells per scaffold. Following expansion, 3D EECM-derived cells were assessed based on clinical release criteria of the Vigil manufacturing process utilized for Phase IIb trial operation with the FDA. 3D EECM-derived cells passed all Vigil manufacturing release criteria including cytokine expression. Here, we demonstrate successful Vigil product manufacture achieving the specifications necessary for the clinical trial product release of Vigil treatment. Our results confirm that 3D EECM can be utilized for the expansion of human cancer cell CCL-247, justifying further clinical development involving human tissue sample manufacturing including core needle biopsy and minimal ascites samples.
AUTHOR Moon, Seongjun and Neale, Dylan B. and Kim, Do Hoon and Mukherji, Malini and Hughes, Elliot and Deng, Yuxuan and Kerneis, Fabienne and Luo, Xiuquan and Tharp, Darron and Bognar, Ernest and Stanbery, Laura and Nemunaitis, John and Chun, Tae-Hwa and Lahann, Joerg
Title A Scalable Engineered Extracellular Matrix Platform to Expand Tumor Cells [Abstract]
Year 2023
Journal/Proceedings Advanced NanoBiomed Research
Reftype
DOI/URL DOI
Abstract
The demand for high-throughput and scalable cell expansion platforms that can accommodate diverse cell types remains a critical requirement across various biomedical fields. Fibronectin (Fn), an essential component of the extracellular matrix (ECM), has been used as a conformal surface coating for two-dimensional (2D) cell culture systems. However, the soluble, globular Fn used for 2D coatings differs structurally from the native Fn, which possesses a three-dimensional (3D) fibrillar structure. Herein, a large-scale engineered ECM (EECM) cell expansion platform based on a 3D fibrillar Fn network spanning over centimeters is presented. Extended fibrillar networks are formed by shearing dilute Fn solutions over tessellated polymeric scaffolds, which are conveniently prepared by 3D printing. The structure and size of the Fn-based 3D EECM scaffold are optimized by evaluating the proliferation of a colorectal tumor cell line, CT26, commonly used in the in vivo tumor immunotherapy models. The 3D EECM scaffolds support a fourfold more efficient tumor cell expansion than a conventional 2D culture system, demonstrating the potential efficacy in supporting the robust expansion of cancer cells ex vivo with an eye on cancer immunotherapy.
AUTHOR Steier, Anke and Schmieg, Barbara and Irtel von Brenndorff, Yannic and Meier, Manuel and Nirschl, Hermann and Franzreb, Matthias and Lahann, Joerg
Title Enzyme Scaffolds with Hierarchically Defined Properties via 3D Jet Writing [Abstract]
Year 2020
Journal/Proceedings Macromolecular Bioscience
Reftype
DOI/URL DOI
Abstract
Abstract The immobilization of enzymes into polymer hydrogels is a versatile approach to improve their stability and utility in biotechnological and biomedical applications. However, these systems typically show limited enzyme activity, due to unfavorable pore dimensions and low enzyme accessibility. Here, 3D jet writing of water-based bioinks, which contain preloaded enzymes, is used to prepare hydrogel scaffolds with well-defined, tessellated micropores. After 3D jet writing, the scaffolds are chemically modified via photopolymerization to ensure mechanical stability. Enzyme loading and activity in the hydrogel scaffolds is fully retained over 3 d. Important structural parameters of the scaffolds such as pore size, pore geometry, and wall diameter are controlled with micrometer resolution to avoid mass-transport limitations. It is demonstrated that scaffold pore sizes between 120 µm and 1 mm can be created by 3D jet writing approaching the length scales of free diffusion in the hydrogels substrates and resulting in high levels of enzyme activity (21.2% activity relative to free enzyme). With further work, a broad range of applications for enzyme-laden hydrogel scaffolds including diagnostics and enzymatic cascade reactions is anticipated.