BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: SINTEF
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Bioprinting Applications
- Cell Type
- Extracellular Vesicles
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Monocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Osteoblasts
- Neutrophils
- Adipocytes
- Smooth Muscle Cells
- Epithelial
- T cells
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Synoviocytes
- Stem Cells
- Spheroids
- Meniscus Cells
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Human Trabecular Meshwork Cells
- Neurons
- Macrophages
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Annulus Fibrosus Cells
- Chondrocytes
- Embrionic Kidney (HEK)
- Corneal Stromal Cells
- Astrocytes
- Fibroblasts
- β cells
- Hepatocytes
- Myoblasts
- Pericytes
- Epicardial Cells
- Cancer Cell Lines
- Bacteria
- Institution
- Jiao Tong University
- University of Aveiro
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- University of Michigan – Biointerfaces Institute
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- University of Sheffield
- University of Taiwan
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- National Yang Ming Chiao Tung University
- University of Vilnius
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- Tiangong University
- Xi’an Children’s Hospital
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- DWI – Leibniz Institute
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Innsbruck University
- Politecnico di Torino
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- Chinese Academy of Sciences
- ENEA
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Jiangsu University
- University of Nottingham
- University of Geneva
- SINTEF
- Rice University
- Leibniz University Hannover
- Trinity College
- Novartis
- University of Central Florida
- Hefei University
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- University of Toronto
- Brown University
- Polish Academy of Sciences
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- Shandong Medical University
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Montreal University
- Technical University of Berlin
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Harbin Institute of Technology
- Anhui Polytechnic
- University Children's Hospital Zurich
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Biomaterials & Bioinks
- Application
- In Vitro Models
- Robotics
- Drug Discovery
- Medical Devices
- Electronics – Robotics – Industrial
- Tissue and Organ Biofabrication
- Cartilage Tissue Engineering
- Dental Tissue Engineering
- Bone Tissue Engineering
- Urethra Tissue Engineering
- Drug Delivery
- Uterus Tissue Engineering
- Skin Tissue Engineering
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Muscle Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Liver tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
- Bioelectronics
- Industrial
- Biomaterial Processing
- Tissue Models – Drug Discovery
- Review Paper
- Printing Technology
- Biomaterial
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Solid Dosage Drugs
- Thermoplastics
- Coaxial Extruder
- Non-cellularized gels/pastes
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Salecan
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- Poly(methyl methacrylate) (PMMA)
- PEDOT
- Jeffamine
- SEBS
- Polypropylene Oxide (PPO)
- Polyethylene
- Sucrose Acetate
- Carbopol
- Epoxy
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- poly (ethylene-co -vinyl acetate) (PEVA)
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Mineral Oil
- Poly(Oxazoline)
- Zein
- Acrylamide
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Ionic Liquids
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- carboxybetaine acrylamide (CBAA)
- Cellulose
- Novogel
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
- Hyaluronic Acid
- Peptide gel
- Poly(Acrylic Acid)
- Polyethylene glycol (PEG) based
- α-Bioink
- Heparin
- sulfobetaine methacrylate (SBMA)
- Collagen
- Elastin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Silk Fibroin
- Pyrogallol
- Xanthan Gum
- Fibronectin
- Fibrinogen
- Fibrin
- Paeoniflorin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Bioprinting Technologies
AUTHOR
Title
Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity
[Abstract]
Year
2018
Journal/Proceedings
ACS Applied Materials and Interfaces
Reftype
DOI/URL
DOI
Groups
AbstractThree-dimensional (3D) bioprinting allows the fabrication of 3D structures containing living cells whose 3D shape and architecture are matched to a patient. The feature is desirable to achieve personalized treatment of trauma or diseases. However, realization of this promising technique in the clinic is greatly hindered by inferior mechanical properties of most biocompatible bioink materials. Here, we report a novel strategy to achieve printing large constructs with high printing quality and fidelity using an extrusion-based printer. We incorporate cationic nanoparticles in an anionic polymer mixture, which significantly improves mechanical properties, printability, and printing fidelity of the polymeric bioink due to electrostatic interactions between the nanoparticles and polymers. Addition of cationic-modified silica nanoparticles to an anionic polymer mixture composed of alginate and gellan gum results in significantly increased zero-shear viscosity (1062%) as well as storage modulus (486%). As a result, it is possible to print a large (centimeter-scale) porous structure with high printing quality, whereas the use of the polymeric ink without the nanoparticles leads to collapse of the printed structure during printing. We demonstrate such a mechanical enhancement is achieved by adding nanoparticles within a certain size range (90%) and extracellular matrix secretion are observed for cells printed with nanocomposite inks. The design principle demonstrated can be applied for various anionic polymer-based systems, which could lead to achievement of 3D bioprinting-based personalized treatment.