BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Rowan University
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Cell Type
- T cells
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Synoviocytes
- Stem Cells
- Spheroids
- Meniscus Cells
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Human Trabecular Meshwork Cells
- Neurons
- Macrophages
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Annulus Fibrosus Cells
- Chondrocytes
- Embrionic Kidney (HEK)
- Corneal Stromal Cells
- Astrocytes
- Fibroblasts
- β cells
- Hepatocytes
- Myoblasts
- Pericytes
- Epicardial Cells
- Cancer Cell Lines
- Bacteria
- Extracellular Vesicles
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Osteoblasts
- Monocytes
- Adipocytes
- Smooth Muscle Cells
- Epithelial
- Neutrophils
- Institution
- National Yang Ming Chiao Tung University
- University of Vilnius
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- Tiangong University
- Xi’an Children’s Hospital
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- DWI – Leibniz Institute
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Innsbruck University
- Politecnico di Torino
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- University of Minnesota
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- Chinese Academy of Sciences
- ENEA
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Jiangsu University
- Rowan University
- University of Nottingham
- University of Geneva
- SINTEF
- Rice University
- Leibniz University Hannover
- Trinity College
- Novartis
- University of Central Florida
- Hefei University
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- University Hospital Basel
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- University of Toronto
- Brown University
- Polish Academy of Sciences
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- Shandong Medical University
- University of Birmingham
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Montreal University
- Technical University of Berlin
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Harbin Institute of Technology
- Anhui Polytechnic
- University Children's Hospital Zurich
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Jiao Tong University
- University of Aveiro
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- University of Michigan – Biointerfaces Institute
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- University of Sheffield
- University of Taiwan
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- Biomaterials & Bioinks
- Application
- Personalised Pharmaceuticals
- Bioelectronics
- Industrial
- Biomaterial Processing
- Tissue Models – Drug Discovery
- In Vitro Models
- Robotics
- Drug Discovery
- Medical Devices
- Electronics – Robotics – Industrial
- Tissue and Organ Biofabrication
- Cartilage Tissue Engineering
- Dental Tissue Engineering
- Bone Tissue Engineering
- Urethra Tissue Engineering
- Drug Delivery
- Uterus Tissue Engineering
- Gastric Tissue Engineering
- Skin Tissue Engineering
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Muscle Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Liver tissue Engineering
- BioSensors
- Review Paper
- Printing Technology
- Biomaterial
- Solid Dosage Drugs
- Thermoplastics
- Coaxial Extruder
- Non-cellularized gels/pastes
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Salecan
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- Poly(methyl methacrylate) (PMMA)
- PEDOT
- Jeffamine
- SEBS
- Polypropylene Oxide (PPO)
- Polyethylene
- Sucrose Acetate
- Polyhydroxybutyrate (PHB)
- Carbopol
- Epoxy
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- poly (ethylene-co -vinyl acetate) (PEVA)
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Mineral Oil
- 2-hydroxyethyl methacrylate (HEMA)
- Poly(Oxazoline)
- Zein
- Acrylamide
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Ionic Liquids
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
- Hyaluronic Acid
- Peptide gel
- Poly(Acrylic Acid)
- Polyethylene glycol (PEG) based
- α-Bioink
- Heparin
- sulfobetaine methacrylate (SBMA)
- Collagen
- Elastin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Silk Fibroin
- Pyrogallol
- Xanthan Gum
- Fibronectin
- Fibrinogen
- Fibrin
- Paeoniflorin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- carboxybetaine acrylamide (CBAA)
- Cellulose
- Novogel
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Bioprinting Technologies
- Bioprinting Applications
AUTHOR
Title
3D printed PHB-dextran-whitlockite porous construct coated with sildenafil-loaded nanofibers: a hybrid scaffold for craniofacial reconstruction
[Abstract]
Year
2025
Journal/Proceedings
International Journal of Biological Macromolecules
Reftype
Groups
AbstractIn this study, a novel hybrid scaffold comprising 3D-printed porous polyhydroxybutyrate (PHB), dextran (Dex), and magnesium-doped whitlockite (WL) nanoparticles was developed, which were further enhanced with an electrospun nanofibrous coating composed of Dex and Pluronic F127 (F127) loaded with Sildenafil (Sil) for use in craniofacial regeneration. This design was intended to improve the solubility of sildenafil and enable controlled release. Scanning electron microscopy (SEM) revealed a well-integrated structure between the 3D-printed strands and electrospun nanofibers. The scaffold exhibited sustained release of Sil over 28 days, with mechanical testing showing a compressive strength of 3.70 ± 0.33 MPa and an elastic modulus of 49.04 ± 4.62 MPa. Non-toxicity was confirmed via MTT assay on the MG63 cell line, and qRT-PCR results indicated significantly higher expression levels of collagen I, RUNX2, osteocalcin, VEGF, and CD31 markers associated with osteogenesis and angiogenesis. Following implantation in a rat calvarial defect model, the scaffold demonstrated robust osteogenic activity and new bone tissue formation over an eight-week period. This innovative scaffold design offers a promising solution for overcoming the challenges in craniofacial defect repair by integrating bioactive materials with advanced drug delivery systems, leading to more effective tissue regeneration strategies.
